
You are looking at Dirk Riehle’s dissertation on Object-Oriented Framework Design (it starts on the
next page). The full reference is:

Dirk Riehle. Framework Design: A Role Modeling Approach. Ph.D. Thesis, No. 13509. Zürich,
Switzerland, ETH Zürich, 2000.

You can browse it on the web in HTML here:

http://dirkriehle.com/computer-science/research/dissertation/index.html

The dissertation weighs in with more than 200 pages. An earlier summary is provided by the
following much shorter OOPSLA 1998 paper:

Dirk Riehle and Thomas Gross. "Role Model Based Framework Design and Integration." In
Proceedings of the 1998 Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ‘98). ACM Press, 1998. Page 117-133.

This paper can be accessed here:

http://dirkriehle.com/computer-science/research/1998/oopsla-1998.html

(If you are a researcher, you may still want to read the dissertation as it contains crisper and more
detailed definitions, examples, and validation.)

If you like this work, you may also like our work on Framework Development for Large Systems

http://dirkriehle.com/computer-science/research/1997/cacm-1997-frameworks.html

on Composite Design Patterns

http://dirkriehle.com/computer-science/research/1997/oopsla-1997.html

and on Design Pattern Density (TBP).

Dirk Riehle’s publication list can be found at http://dirkriehle.com/publications.

http://dirkriehle.com/computer-science/research/dissertation/index.html
http://dirkriehle.com/computer-science/research/1998/oopsla-1998.html
http://dirkriehle.com/computer-science/research/1997/cacm-1997-frameworks.html
http://dirkriehle.com/computer-science/research/1997/oopsla-1997.html
http://dirkriehle.com/publications.

Diss. ETH No. 13509

Framework Design
A Role Modeling Approach

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

DOKTOR DER TECHNISCHEN WISSENSCHAFTEN

(DOCTOR OF TECHNICAL SCIENCES)

Dirk Riehle

Dipl.-Inform., Universität Hamburg

born xxxx-xx-xx, citizen of xxxxxxxxxxx

Accepted on the recommendation of

Prof. Dr. Thomas R. Gross

Prof. Dr. Douglas C. Schmidt

2000

Copyright 1999, 2000 by Dirk Riehle. All rights reserved.

Abstract

Role modeling for framework design, as developed in this dissertation, makes designing, learning, and
using object-oriented frameworks easier than possible with traditional class-based approaches.

Object-oriented frameworks promise higher productivity and shorter time-to-market for the develop-
ment of object-oriented applications. These goals are achieved through design and code reuse. While
many projects show that these promises can be met, failed projects also show that they are not always
easy to reach. This dissertation addresses three pertinent technical problems of designing, learning,
and using object-oriented frameworks: complexity of classes, complexity of object collaboration, and
lack of clarity of requirements put upon use-clients of a framework.

Role modeling for framework design is an evolutionary extension of class-based modeling of frame-
works. The method enhances class-based modeling with role modeling concepts. In this method, ob-
jects play roles that are described by role types. An object typically plays several roles, so that the
class of an object composes several role types. Moreover, objects collaborate for several different pur-
poses, each of which is called an object collaboration task. Such a task is described by a role model. A
class model composes all relevant role models to describe how instances of its classes collaborate. De-
scribing classes as compositions of role types and class models as compositions of role models reduces
class and object collaboration complexity.

Going one step further, role modeling for framework design defines frameworks as explicit design and
implementation artifacts with well-defined boundaries. A framework defines how to use it with the
help of so-called free role types of free role models. A free role model provides free role types for
roles that clients of a framework have to play to make proper use of the framework. Free role types are
key to defining the requirements put upon use-clients of a framework. Only by acting according to free
role types from a free role model may use-clients make use of framework objects. The dissertation
shows how these concepts are used to design, use, and layer object-oriented frameworks.

Role modeling for framework design represents a significant improvement over current practice re-
garding the initially stated problems of framework design. This thesis is validated with the help of

iv

three case studies that show how role modeling for framework design works in practice. Each of the
case studies compares a traditional class-based framework design with a framework design based on
role modeling. However, each case study does so from a different angle. The first case study on the
Geo Object framework compares a traditional design with an enhanced role modeling design. The
second case study on the KMU Desktop Tools framework shows how role modeling helps in the re-
design of an existing framework and how the redesigned version compares to the old version. The
third case study on the JHotDraw framework for drawing editors shows how an existing well-designed
framework design can be described even better using role modeling. Finally, all three case studies re-
flect on the experiences made while carrying them out.

For its validation, the thesis is split up into nine sub-theses, each of which has a problem and an activ-
ity dimension. The addressed problems are class complexity, object collaboration complexity, and lack
of clarity of requirements put upon use-clients. The activities are designing and redesigning a frame-
work, learning a framework, and using a framework. For each problem/activity pair an argument is
made based on the case studies. The overall validation of the thesis becomes the validation of all nine
problem/activity pairs.

Role modeling for framework design combines the strengths of role modeling with those of class-
based modeling while leaving out their weaknesses. It is therefore an evolutionary extension of current
methods that preserves existing investments. Finally, role modeling for framework design is the first
comprehensive method to make frameworks explicit design artifacts and to introduce modeling con-
cepts for directly expressing their unique properties.

Kurzfassung

Der rollenmodellbasierte Entwurf von Frameworks, wie ihn die vorliegende Dissertation beschreibt,
macht das Entwerfen, Verstehen, und Verwenden objektorientierter Frameworks einfacher, als es mit
herkömmlichen klassenbasierten Entwurfsmethoden möglich ist.

Objektorientierte Frameworks dienen dazu, die Produktivität der Anwendungsentwicklung zu erhöhen
und die Zeit zu reduzieren, bis eine Anwendung fertiggestellt und ausgeliefert werden kann. Man
hofft, dies durch Entwurfs- und Codewiederverwendung zu erreichen. Viele Projekte zeigen, dass die-
se Ziele erreicht werden können. Allerdings zeigen gescheiterte Projekte ebenfalls, dass diese Ziele
nicht immer einfach zu erreichen sind. Die vorliegende Dissertation behandelt drei zentrale Probleme
des Entwurfs und der Verwendung von objektorientierten Frameworks: die Komplexität von Klassen,
die Komplexität des Objektzusammenspiels („object collaboration“) und die fehlende Klarheit in den
Anforderungen, die ein Framework an Klienten stellt, die es benutzen wollen.

Der Entwurf von Frameworks mittels Rollenmodellierung, wie ihn diese Dissertation entwickelt, ist
eine evolutionäre Weiterentwicklung des klassenbasierten Entwurfs. Der Ansatz erweitert den tradi-
tionellen klassenbasierten Entwurf mit Konzepten der Rollenmodellierung. Beim vorgestellten Ansatz
spielen Objekte Rollen, welche durch Rollentypen beschrieben werden. Normalerweise spielt ein Ob-
jekt mehrere Rollen, so dass die Klasse eines Objektes mehrere Rollentypen komponiert. Weiterhin
dient das Zusammenspiel von Objekten üblicherweise mehreren unterschiedlichen Aufgaben, die als
Objektzusammenspiel mit einer Aufgabe („object collaboration task“) bezeichnet werden. Solch ein
Objektzusammenspiel mit einer Aufgabe wird durch ein Rollenmodell beschrieben. Ein Klassenmo-
dell ist dann die Komposition aller relevanten Rollenmodelle; es beschreibt wie Exemplare der Klas-
sen des Klassenmodells zusammenspielen. Die Beschreibung von Klassen als Kompositionen von
Rollentypen und von Klassenmodellen als Kompositionen von Rollenmodellen reduziert die Komple-
xität von Klassen und die Komplexität des Zusammenspiels von Objekten.

In einem weiteren Schritt führt die vorgestellte Methode Frameworks als eigenständige Entwurfs- und
Implementierungsartefakte ein, welche sich wohldefiniert gegen ihre Umgebung abgrenzen. Dabei

vi

verwendet ein Framework sogenannte freie Rollentypen, um festzulegen, wie Klientenobjekte Rollen
zu spielen haben, um das Framework korrekt zu nutzen. Der Einsatz von freien Rollentypen ist von
zentraler Bedeutung, um die Anforderungen zu definieren, die ein Framework an seine Umgebung
richtet: Klientenobjekte dürfen Framework-Objekte nur dann benutzen, wenn sie Rollen gemäss freier
Rollentypen spielen. Die vorliegende Dissertation zeigt auf, wie diese Konzepte zum Entwurf, zur
Verwendung, und zur Schichtenbildung von Frameworks verwendet werden.

Der Entwurf von Frameworks mittels Rollenmodellierung stellt eine signifikante Verbesserung der
heute üblichen Praxis dar (in Bezug auf die oben genannten Probleme). Die Dissertation belegt diese
These mithilfe von drei Fallstudien, welche illustrieren, wie die geschilderte Methode in der Praxis
eingesetzt wird. Jede Fallstudie vergleicht einen herkömmlichen klassenbasierten Framework-Entwurf
mit einem Entwurf auf Basis von Rollenmodellierung. Jede Fallstudie wählt dabei eine etwas andere
Perspektive und ist durch einen anderen Hintergrund motiviert. Die erste Fallstudie beschreibt das Geo
Object Framework, einmal als herkömmlichen klassenbasierten Entwurf und einmal als rollenmodell-
basierten Entwurf. Die zweite Fallstudie beschreibt die Revision des Entwurfs des KMU Desktop
Tools Framework unter Verwendung von Rollenmodellierung. Die Fallstudie vergleicht den ur-
sprünglichen klassenbasierten Entwurf mit dem neuen rollenmodellbasierten Entwurf. Die dritte Fall-
studie zeigt, wie Rollenmodellierung die Dokumentation eines existierenden Frameworks, des JHot-
Draw Frameworks für grafische Editoren, verbessern hilft. Alle drei Fallstudien berichten zudem über
die Erfahrungen, die bei ihrer Ausführung gemacht wurden.

Für ihre Gesamtvalidierung wird die Dissertations-These in neun Einzelthesen aufgebrochen, die je-
weils aus einer Problem- und einer Aktivitätsdimension bestehen. Die betrachteten Probleme sind die
Komplexität von Klassen, die Komplexität des Objektzusammenspiels, und die fehlende Klarheit in
den Anforderungen, die ein Framework an seine Klienten stellt. Die betrachteten Aktivitäten sind das
Entwerfen und Revidieren des Entwurfs eines Frameworks, das Verstehen eines Frameworks und das
Verwenden eines Frameworks. Jedes der resultierenden Problem/Aktivitäts-Paare wird einzeln be-
trachtet. Für jedes Paar wird begründet, warum Rollenmodellierung einen relevanten Fortschritt dar-
stellt. Die Validierung der Dissertations-These insgesamt folgt aus der Validierung dieser neun Ein-
zelthesen.

Der rollenmodellbasierte Entwurf von objektorientierten Frameworks kombiniert die Stärken der
Rollenmodellierung mit den Stärken des herkömmlichen klassenbasierten Entwurfs und überkommt
dabei viele seiner Schwächen. Der vorgestellte Modellierungsansatz ist damit eine evolutionäre Wei-
terentwicklung heutiger Methoden, welche existierende Investitionen wahrt. Weiterhin ist der rollen-
modellbasierte Entwurf von Frameworks der erste umfängliche Modellierungsansatz, der Frameworks
als eigenständige Entwurfsartefakte behandelt und Entwurfskonzepte bereitstellt, welche die spezifi-
schen Eigenschaften von Frameworks ausdrücken helfen.

Table of Contents

Preface xv

1 Introduction 1

1.1 Why object-oriented frameworks? 1

1.2 Problems with frameworks 2

1.3 Role modeling for framework design 3

1.4 Dissertation overview 4

1.5 Actors in this dissertation 6

2 Frameworks, Related Work, and Thesis Statement 7

2.1 Overview of framework concepts 7

2.1.1 Object-oriented software architecture 7

2.1.2 Review of framework terminology 8

viii

2.1.3 Problems with frameworks 9

2.2 Related work 10

2.2.1 Object-oriented design 10

2.2.2 Programming methods 11

2.2.3 Development methods 12

2.2.4 Role modeling concepts 13

2.2.5 Object-oriented frameworks 14

2.2.6 Review of related work 15

2.3 Thesis statement of dissertation 15

2.3.1 What is the scope of "design and documentation"? 15

2.3.2 What does "easier" mean? 17

2.3.3 Who is the subject? 18

2.3.4 Final version of the thesis 18

3 Role Modeling 21

3.1 Chapter overview 21

3.2 Object modeling fundamentals 23

3.2.1 Object and class (definition) 23

3.2.2 Value and value type (definition) 25

3.2.3 Figure class (example) 26

3.2.4 Relationships and relationship descriptions (definition) 27

3.2.5 Inheritance (definition) 30

3.2.6 Object collaboration and class model (definition) 31

3.2.7 Figure class model (example) 31

3.3 Role modeling extensions 33

3.3.1 Role and role type (definition) 33

3.3.2 Figure, Child, etc. (example) 35

3.3.3 Class (revised definition) 35

3.3.4 Choice of type specification mechanism 37

3.3.5 Object collaboration task and role model (definition) 37

3.3.6 Role constraint (definition) 38

3.3.7 Figure role models (examples) 39

3.3.8 Composing role models 42

ix

3.3.9 Class model (revised definition) 42

3.3.10 Figure class model (revised example) 45

3.3.11 Design patterns in role modeling 49

3.3.12 Visual role model shorthands 51

3.4 Summary 52

4 Framework Design 53

4.1 Chapter overview 53

4.2 Framework design 54

4.2.1 Framework (definition) 54

4.2.2 Free role type (definition) 55

4.2.3 Built-on class (definition) 56

4.2.4 Extension-point class (definition) 57

4.2.5 Figure and Graphics framework (examples) 57

4.3 Framework use 62

4.3.1 Direct coupling through free role models 62

4.3.2 Examples of direct coupling 62

4.3.3 Properties of free role types 65

4.4 Framework extension 66

4.4.1 Domains and applications 66

4.4.2 Framework extension (definition) 66

4.4.3 Figure and SimpleFigures framework extensions (examples) 67

4.5 Framework layering 71

4.5.1 Layers and tiers 71

4.5.2 Traditional layer coupling 72

4.5.3 Role-model-based layer coupling 73

4.5.4 KidsEditor framework layering (example) 74

4.6 Framework documentation 76

4.6.1 What and when to document 76

4.6.2 How role modeling can help 77

4.6.3 A simple design documentation template 77

4.7 Summary 78

x

5 Extension of Industry Standards 79

5.1 Chapter overview and motivation 79

5.2 Common properties 80

5.2.1 Extending an industry standard 80

5.2.2 General requirements 82

5.2.3 Handling role types and role models 82

5.2.4 Figure framework (example) 83

5.3 Design notations 84

5.3.1 Extending design notations 85

5.3.2 Extending UML with role modeling 85

5.3.3 Extension properties 88

5.4 Programming languages 89

5.4.1 Extending programming languages 89

5.4.2 Problems of programming language extension 90

5.4.3 Extending Java with role modeling 91

5.4.4 Extending C++ with role modeling 94

5.4.5 Extending Smalltalk with role modeling 95

5.4.6 Extension properties 96

5.5 Summary 97

6 Case Study: The Geo Object Framework 99

6.1 Case study overview 99

6.1.1 Project history 99

6.1.2 The case study 100

6.1.3 Chapter structure 100

6.2 The Geo Object framework 101

6.2.1 Framework overview 101

6.2.2 Class model 101

6.2.3 Role models 102

6.2.4 Built-on classes 107

6.2.5 Example extension 107

6.3 Experiences and evaluation 109

xi

6.3.1 Statistics of case study 109

6.3.2 Complexity of classes 111

6.3.3 Complexity of object collaboration 111

6.3.4 Clarity of requirements put upon use-clients 112

6.3.5 Reuse of experience 112

7 Case Study: The KMU Desktop Tools Framework 115

7.1 Case study overview 115

7.1.1 Project history 115

7.1.2 The case study 116

7.1.3 Chapter structure 116

7.2 The original Tools framework 116

7.2.1 Framework overview 117

7.2.2 Classes and their functionality 119

7.2.3 How to use the framework 122

7.3 Problems with the original framework 123

7.4 The redesigned Tools framework 123

7.4.1 Framework overview 124

7.4.2 Class model 125

7.4.3 Free role models 126

7.4.4 Internal role models 129

7.5 The new Environment framework 131

7.6 Experiences and evaluation 133

7.6.1 Statistics of case study 133

7.6.2 Complexity of classes 134

7.6.3 Complexity of object collaboration 135

7.6.4 Clarity of requirements put upon use-clients 135

7.6.5 Reuse of experience through design patterns 135

7.6.6 Further evolution of framework 136

8 Case Study: The JHotDraw Framework 137

8.1 Case study overview 137

xii

8.1.1 JHotDraw history 137

8.1.2 The case study 138

8.1.3 Chapter structure 138

8.2 The JHotDraw framework 139

8.2.1 Design discussion overview 139

8.2.2 The Figure classes 140

8.2.3 The Drawing and DrawingView classes 144

8.2.4 The DrawingEditor classes 149

8.3 Experiences and evaluation 152

8.3.1 Statistics of the JHotDraw framework design 152

8.3.2 Observations from the case study 153

8.3.3 Comparison of documentation techniques 154

8.3.4 Complexity of classes 156

8.3.5 Complexity of object collaboration 157

8.3.6 Clarity of requirements put upon use-clients 158

8.3.7 Reuse of experience through design patterns 158

9 Thesis Validation 159

9.1 Thesis review and validation strategy 159

9.2 Thesis validation 161

9.2.1 Describes class as composition of role types 161

9.2.2 Breaks up relationship descriptions into role models 162

9.2.3 Makes requirements on clients explicit 163

9.2.4 Supports reuse of experience 164

9.2.5 Consolidation of validation 165

9.3 Summary (meaning of validation) 166

10 Conclusions 169

10.1 Contributions 169

10.2 Future work 170

10.3 Final conclusions 172

xiii

A References 173

B Glossary 181

C Design Notation 187

C.1 Classes and role types 187

C.2 Object relationships 188

C.3 Class and role models 189

C.4 Role constraints 190

C.5 Role model shorthands 191

C.6 Frameworks 192

D Design Patterns 195

D.1 Abstract Factory 196

D.2 Adapter 196

D.3 Bridge 196

D.4 Chain of Responsibility 197

D.5 Class Object 197

D.6 Composite 198

D.7 Decorator 198

D.8 Factory Method 199

D.9 Manager 199

D.10 Mediator 199

D.11 Metaobject 200

D.12 Null Object 200

D.13 Object Registry 201

D.14 Observer 201

xiv

D.15 Product Trader 201

D.16 Property List 202

D.17 Prototype 202

D.18 Role Object 203

D.19 Type Object 203

D.20 Serializer 204

D.21 Singleton 204

D.22 Specification 205

D.23 State 206

D.24 Strategy 206

D.25 Visitor 206

E Pointers to Further Material 209

Preface

What does the creator of a dissertation aspire to? To fulfill academic requirements for a Ph.D., for
sure, but this is not the only goal. Maybe, some want to prepare for an academic career, and some
want to impress their peers or their parents. My aspiration is to present a dissertation that does not only
make a small but significant contribution to scientific progress, but that also provides significant help
to the practicing software developer.

This dissertation addresses crucial technical problems of object-oriented framework design, a sub-
discipline of software development whose importance has been increasing steadily over the last 10
years. Object-oriented software development in general, and framework-based development in par-
ticular, is gaining mass-market momentum because of Java, the emerging COBOL of the early next
century (for better or worse).

UBS AG, a former employer of mine, has set up an aggressive training program for its more than
thousand developers to learn Java. Naturally, these developers will work with Sun’s JDK, a large ob-
ject-oriented class library parts of which are best described as a set of frameworks. Some of these de-
velopers will face problems of designing frameworks, and all of them will face problems of learning
and using frameworks. Three of these pertinent problems are addressed in this dissertation. I hope that
the concepts from my dissertation will ease the lives of my former and current colleagues. For some it
already has, as one of the case studies in this dissertation shows.

Originally, I had thought of my intended dissertation work as a kind of ordeal. Judging from what suc-
cessful colleagues had told me, finding a worthwhile Ph.D. thesis, writing a dissertation, and persisting
in all trials is like descending to hell, being eaten alive, and returning to the surface while trying to
maintain a normal life. Nothing of this has happened to me (including the normal life). I managed to
nail down the thesis proposal in 1997, continue with my research and its consolidation in 1998, and
finish writing up the dissertation in 1999. One reason for this is that I could build on my earlier re-
search work dating back to 1994, even though originally I had not intended to do so.

xvi

However, the most important reason for succeeding is the guidance and support I received from my
advisor, Thomas Gross. I have learned immensely from him. He taught me how to find direction in
Ph.D. thesis work, drill down to the essentials, and make a dissertation out of it. I am highly grateful to
him for making my Ph.D. thesis work such a smooth and rewarding experience.

Also, of importance to this work is the supportive environment I found at Ubilab, the IT research labo-
ratory of UBS AG, where I worked until the end of March 1999. I appreciate my colleague’s interest
in my work and their morale support, for which I would like to thank them very much. In particular,
the creative atmosphere in the Software Engineering group, originally with Kai-Uwe Mätzel, and later
with Erica Dubach and Hans Wegener supported my ascent to prevail on top of this dissertation. I
wish to thank them all.

I have collaborated with many people over the last years, and in one way or another, they have influ-
enced my thinking. Of particular importance to me are the discussions I had with Dirk Bäumer, Daniel
Megert, and Wolf Siberski. I would like to thank them very much. In a similar vein, I would like to
thank Walter Bischofberger, Gregory Hutchinson, Birgit Rieder, Bruno Schäffer, and Heinz Zülligho-
ven.

The dissertation went through a number of releases (“I released early, I released often”). Ralph John-
son commented on the OOPSLA 1998 release, Dirk Bäumer commented on the Christmas 1998 re-
lease, nobody commented on the February 1999 release, and Wolf Siberski commented on the May
1999 release. Moira Norrie and Douglas Schmidt commented on the final release through the feedback
I got at my doctoral examination. Thomas Gross commented on all of the releases. I am indebted to all
of them for their insightful comments that helped me improve this dissertation.

Dirk Riehle

Zurich, Switzerland. June 1999.

Mannheim, Germany, February 2000.

1
Introduction

Frameworks are of key importance for developing large-scale object-oriented software systems. They
promise higher productivity and shorter time-to-market through design and code reuse. However,
many projects report that this promise is hard to fulfill: the design of object-oriented frameworks is all
but well understood. This introductory chapter sheds some light on why this is so, and presents several
key problems. It thereby poses the research questions that have driven the work presented in this dis-
sertation, and gives an overview of how and where these questions are answered in this work.

1.1 Why object-oriented frameworks?
Object-oriented frameworks promise higher productivity and shorter time-to-market of application
development through design and code reuse (than possible with non-framework based approaches).

Object orientation comprises object-oriented analysis, object-oriented design, and object-oriented pro-
gramming. Using a small set of concepts (objects, classes, and their relationships), developers can
model an application domain (analysis), define a software architecture to represent that model on a
computer (design), and implement the architecture to let a computer execute the model.

None of these activities (analysis, design, and implementation), nor the resulting models, are trivial.
To carry them out effectively, developers have invented additional concepts that represent the con-
ceptual entities they are dealing with. One such key concept is the object-oriented framework.

An object-oriented framework is a reusable design together with an implementation [JF88, CIM92,
Lew95, FS97, FSJ99]. The design represents a model of an application domain or a pertinent aspect
thereof, and the implementation defines how this model can be executed, at least partially. A good

2

framework’s design and implementation is the result of a deep understanding of the application do-
main, usually gained by developing several applications for that domain. The framework represents
the cumulated experience of how the software architecture and its implementation for most applica-
tions in the domain should look like. It leaves enough room for customization to solve a particular
problem in the application domain.

Developers who apply a framework reuse its design and implementation. They do so to solve an appli-
cation problem that falls into the domain modeled by the framework. By reusing the design, applica-
tion developers customize a (hopefully) well-understood software architecture to their own specific
application problem. This helps them get the key aspects of the architecture right from the beginning.
By reusing the implementation, application developers get up to speed more quickly.

Through design and code reuse, frameworks help developers achieve higher productivity and shorter
time-to-market in application development.

Designing and implementing object-oriented frameworks is hard. Typically, it requires several itera-
tions to get a framework “right” (which might mean nothing more than that it gets a pause before the
evolution of domain requirements leads to yet another redesign and re-implementation of the frame-
work).

In contrast to non-framework based application development, a framework requires additional up-
front investments. If a framework is bought, it requires money to buy it and time to learn it. If a
framework is developed in-house, it requires time and resources, both to develop it, and later to teach
it or to learn it.

However, the promise of a significant increase in productivity and reduction in time-to-market makes
the investment worthwhile in most cases. Today, every large object-oriented development project I
know of uses frameworks in one way or the other. Yet, while there is no way around frameworks in
large-scale object-oriented software development, they are all but well understood and sometimes do
not live up to their promises.

1.2 Problems with frameworks
What is wrong with object-oriented software development based on frameworks? No single answer
can be given. Most projects that fail do so for a multitude of reasons, with poor design and implemen-
tation quality of frameworks being only one of them. Yet, frameworks can significantly contribute to
project success and ensure flexibility and evolvability of applications. It is therefore worthwhile to
investigate current problems in framework development and search for solutions.

Case studies [FK97], current practice [BBE95], as well as my own experiences with frameworks in
whose development I have participated, which I have used, or which I have reviewed suggest the fol-
lowing key problems (these are elaborated in Chapter 2):

• Class complexity. Classes define the behavior of objects, their instances. Objects collaborate in
multiple contexts, for multiple purposes, exhibiting task-specific behavior. For complex objects,
the definition of this behavior in a single flat class interface is inadequate, and better mechanisms
that describe the different aspects of objects, are needed.

• Complementary focus on classes and collaborations. Objects collaborate with each other, for dif-
ferent purposes. Much of the complexity of frameworks goes into designing and implementing the
object collaboration behavior. By assigning responsibilities to individual objects, the focus on
overall collaborative behavior is lost. Thus, mechanisms to describe collaboration behavior are
needed.

3

• Object collaboration complexity. The overall collaborative behavior of framework objects and
their collaboration with client objects may become complex. To make the overall object collabo-
ration easier to understand and to manage, it needs to be broken up into independent pieces.
Means to describe task-specific collaborative behavior of objects are needed, as well as mecha-
nisms to compose these pieces of collaborative behavior to define the full object collaboration.

• Difficulties with using a framework. It is easy to use a framework in ways unforeseen and not in-
tended by their original designers. In particular, the requirements that a framework puts upon its
clients are frequently unclear and unspecified. Framework misuse causes constant work-arounds
for the client and may easily lead to unstable and buggy code. Thus, mechanisms are needed that
help prevent the (mis-)use of frameworks in ways not intended by the framework developers.

These are the problems addressed in this dissertation. Of course, these problems are only a subset of
technical problems with frameworks. Yet, they are a particularly pertinent kind of problems.

These problems suggest a separation of concerns approach: because complexity is high, it needs to
reduced. Reduction of complexity is achieved by breaking up the framework up into (re-)composable
pieces. Each of the pieces can then be analyzed, designed, and understood individually.

1.3 Role modeling for framework design
Role-based object-oriented modeling (or, for short, role modeling), is such a separation of concerns
approach. This dissertation presents an approach for designing object-oriented frameworks using role
modeling. The basic role modeling concepts are role, role type, object collaboration task, and role
model. The next paragraphs, summarized from Chapter 3, shortly explain the concepts.

Objects do not occur in a vacuum. Rather, each object collaborates with other objects: it does so by
playing roles. A role is an observable behavioral aspect of an object. While playing roles, an object
collaborates with other objects, usually for several different purposes at once. Each such well-defined
purpose of object collaboration is an object collaboration task. The composition of all object collabo-
ration tasks becomes the overall object collaboration.

A role type describes each role an object may play. A role type is a regular type specification. Each
object collaboration task is described by a role model. A role model uses role types to describe how an
object in an object collaboration task must behave (play a role) if it wants to properly carry out its part
of the work. The role types of a role model relate to each other using regular object relationship de-
scriptions. The role model is effectively a specification of the set of possible valid object collaboration
tasks.

A class defines the behavior of objects, their instances. A class is the composition of several role
types, each of which is taken from a role model and assigned to one or more classes. The composition
of role types forms the class type. Classes and role models are complementary: a role model focuses
on one particular task of object collaboration, ignoring others, and a class focuses on how roles played
in different tasks come together in one kind of object.

A class model describes the overall collaboration of objects. A class model is a set of classes that are
related with each other through role models and class inheritance. The object relationship descriptions
between the classes can be derived from the relationship descriptions between the role types from the
role models. This way, role models serve as the interconnecting glue between classes, not only show-
ing the overall structure, but the individual object collaboration tasks that make up the class model.
Effectively, with the help of classes, the class model composes the different role models to define
what a valid overall object collaboration is.

4

This dissertation extends the basic modeling approach to support the design of frameworks, leading to
the role modeling for framework design approach. The next paragraphs, summarized from Chapter 4,
shortly explain the involved concepts.

A framework is a class model that defines the collaboration of (framework) objects (and their client
objects with respect to the framework). Next to the framework-internal role models, a framework de-
fines so-called free role models that provide a bridge between the framework client and the frame-
work. Free role types are those role types of a free role model that are to be picked up by client
classes. They specify how client objects of the framework must behave to make proper use of frame-
work objects. Only by playing roles defined by free role types may client objects make use of a
framework.

Frameworks build on other frameworks by picking up these other frameworks’ free role types and as-
signing them to one or more of their own classes. This mechanism of making use of frameworks by
free role models is applied recursively to view systems as layers of frameworks and framework exten-
sion stacked on top of each other. Framework extensions are a set of subclasses of framework classes
that add new free role models. Through the use of free role models new clients may make use of the
extended framework functionality as well.

How does this approach help in overcoming the problems stated above?

• Class complexity. The complexity of a class is reduced by breaking its interface up into distinct
role types. Experience shows that it is easier to understand the parts first and then to compose
them rather than trying to understand the whole all at once.

• Complementary focus on classes and collaborations. The explicit focus on object collaborations
and class models rather than just class hierarchies ensures that both perspectives are taken into ac-
count and represented in the design of a framework.

• Object collaboration complexity. The complexity of the overall collaborative behavior of frame-
work objects is reduced by breaking it up into object collaboration tasks and describing it as the
composition of role models. Again, understanding the parts first makes understanding the whole
easier.

• Difficulties using a framework. The concept of free role model lets developers specify succinctly
how a framework is to be used by use-relationship based clients. Free role models help to prevent
misuse that would otherwise occur easily if the requirements put upon clients are not clarified.

Role modeling for framework design is evolutionary in nature rather the revolutionary. It is used as an
addition to traditional class-based modeling. Role modeling does not try to replace class-based mod-
eling but rather to refine it and improve over it where necessary. Developers who use this approach do
not have to throw away existing investments, but may selectively apply the approach where necessary.

1.4 Dissertation overview
The dissertation comprises three main parts. The first part describes the role modeling approach and
how it is applied to framework design. The second part presents three case studies, each one focussed
on evaluating different aspects of the approach. The third and final part reiterates the claims posed by
the dissertation, and validates them using qualitative arguments and experiences gained from the case
studies.

The first part on role modeling for framework design comprises Chapters 2 to 5.

5

• Frameworks, related work, and dissertation thesis. Chapter 2 puts object-oriented frameworks
into the context of software architecture. It reviews related work on object-oriented software ar-
chitecture and frameworks and lists remaining problems. Based on these problems, it develops the
dissertation thesis.

• Role modeling. Chapter 3 introduces the role modeling foundations, on which Chapter 4 on
framework design builds. Chapter 3 shows how the traditional class-based modeling approach can
be extended with the concepts of role type and role model, and how existing concepts need to be
revised.

• Framework design. Chapter 4 builds on the role modeling foundation from Chapter 3. It develops
a comprehensive definition of the concept of framework and discusses its context. It covers
framework definition, framework use, and framework extension. It also discusses framework lay-
ering and documentation.

• Extension of industry standards with role modeling concepts. Chapter 5 shows how current indus-
try standards can be extended with role modeling concepts. Such an extension lets developers use
role modeling with current standards. The chapter provides extensions of UML, Java, C++, and
Smalltalk.

The second part presents the case studies. It comprises Chapters 6 to 8.

• The Geo Object framework. Chapter 6 presents the Geo Object framework as a case study. This
framework is the root framework of the Geo system, a distributed object system based on a
metalevel architecture. The Object framework provides core abstractions like Object and Class
common to many industrial systems.

• The KMU Desktop Tools framework. Chapter 7 presents the KMU Desktop Tools framework as a
case study. The framework is used to build software tools for desktop applications. It is based on
the Tools and Materials Metaphor approach to software development.

• The JHotDraw drawing editor framework. Chapter 8 presents the JHotDraw framework for
drawing editors as a case study. JHotDraw is based on HotDraw, which is a widely known and
mature framework used to build drawing editor applications.

The third part validates the claim and draws conclusions from the dissertation. It comprises Chapters 9
and 10.

• Validation of dissertation thesis. Chapter 9 reviews the experiences made in the case studies, sup-
ports them with qualitative arguments, and validates the dissertation thesis.

• Conclusions. Chapter 10 reviews the dissertation as a whole. It explains the consequences of the
dissertation results, both from a narrow perspective (the thesis claim), and a wider perspective.

Finally, Appendices A to E provide additional material.

• References. Appendix A lists the references of work referred to by the dissertation.

• Glossary. Appendix B provides a glossary of key terms defined by the dissertation.

• Notation guide. Appendix C provides a notation guide to role modeling for framework design.

• Design patterns. Appendix D presents common design patterns cast in a role model form.

• Further material. Appendix E provides pointers to further material.

For comprehensive understanding, the theory chapters must be read first. Then individual case studies
may be read, followed by the validation of the dissertation thesis. Those who want to get an impres-
sion only may restrict their reading to Chapter 3 and 4 and to one or more case studies. Alternatively,
they may directly jump into a case study, using Appendix C, the notation guide, as a minimal intro-
duction to role modeling for framework design.

6

1.5 Actors in this dissertation
For properly identifying actors in this dissertation, I use the following conventions:

• “we” identifies the reader and the author (you and me),

• “the project team” identifies the team described in Chapter 6,

• “the redesign team” identifies the team described in Chapter 7.

“The project team” and “the redesign team” are only used in their respective chapter. They are some-
times abbreviated as “the team”.

2
Frameworks,
Related Work, and
Thesis Statement

Object-oriented frameworks are cohesive design and implementation artifacts. Frameworks typically
serve to implement (larger-scale) components, and are implemented using (smaller-scale) classes. This
chapter describes the framework concept and its purpose in the context of object-oriented software
architecture. Then the chapter identifies a set of key problems with object-oriented frameworks, and
discusses to which extent related work addresses these problems. Finally, the thesis of this dissertation
is defined and explained.

2.1 Overview of framework concepts
This section first puts frameworks into the context of object-oriented software architecture, then re-
views common and established terminology, and finally provides a list of key problems that haunt to-
day’s application development based on frameworks.

2.1.1 Object-oriented software architecture
Object-oriented software architecture is based on objects and classes as the primitive building blocks.
Current practice distinguishes three levels of system granularity: the class level, the framework level,
and the component level. (Sometimes a fourth component framework level is added, but it is ignored
here, because it does not add anything important to the discussion of object-oriented frameworks.)

On the smallest level of granularity, a system can be designed using classes, whose instances collabo-
rate with each other. A class defines a well-defined and bounded chunk of behavior and state, based on

8

a domain concept that it represents. Objects are instances of classes, and thereby represent instances of
a domain concept.

For small systems, objects and classes are sufficient means for describing the architecture of a system.
However, when a system gets bigger, more and more classes get involved in its architecture, and
higher-level abstractions are needed that let developers design and implement systems.

Systems of medium size can be described as a set of collaborating frameworks and framework exten-
sions. A framework is a cohesive design and implementation artifact [JF88, CIM92, Lew95, FS97,
FSJ99]. It represents a specific domain or an important aspect thereof as a reusable design of abstract
classes (or interfaces) and concrete classes, together with a set of implementations. Good implementa-
tions are reusable, and may or may not be readily instantiable.

A good framework has well-defined boundaries, along which it interacts with clients, and an imple-
mentation that is hidden from the outside. Frameworks and framework extensions are a key part of
medium to large-scale software development [BCG95, BGK+97], but even they have an upper limit of
coping with complexity.

On a large-scale level of granularity, a system can be described as a set of collaborating components,
each of which may have been built from one or more object frameworks [WSP+92, Szy98]. A compo-
nent is a well-defined technical artifact with interfaces to other components. It may or may not have
been implemented using object-oriented frameworks-in case of an object-oriented system it typically
is.

There are many more software architecture related issues like process architecture, code bundling, and
build systems. However, they do not add to the discussion and are therefore omitted from it.

2.1.2 Review of framework terminology
Frameworks model a specific domain or an important aspect thereof. They represent the domain as an
abstract design, consisting of abstract classes (or interfaces). The abstract design is more than a set of
classes, because it defines how instances of the classes are allowed to collaborate with each other at
runtime. Effectively, it acts as a skeleton, or a scaffolding, that determines how framework objects
relate to each other.

A framework comes with reusable implementations in the form of abstract and concrete class imple-
mentations. Abstract implementations are abstract classes that implement parts of a framework ab-
straction (as expressed by an abstract class or interface), but leave crucial implementation decisions to
subclasses. They do so using the principle of Design by Primitives. Design by Primitives bases a class
implementation on a small set of primitive operations that are left open for implementation through
subclasses. Concrete subclasses implement these operations so that they can be instantiated and used
without further subclassing. A detailed discussion of the use of interfaces, abstract classes, and con-
crete classes in object-oriented design is presented in [RD99a, RD99b] (for German readers: [Rie97d,
Rie97e]).

When designing an application, a developer may choose to use an existing framework, because it
models parts of the application domain well. There are two primary ways of using a framework: either
by use-relationships or by inheritance. Consequently, there are two kinds of clients: use-relationship
based clients and inheritance-based clients (use-clients and extension clients).

A use-client object instantiates one or more framework classes and uses the objects for its purposes. A
framework, whose classes can be readily instantiated, and which can be used as-is, is called a black-
box framework [JF88]. An extension client class subclasses framework classes according to its needs.
It thereby customizes the general domain model represented by the framework to its specific applica-
tion needs. The new subclasses are used by use-clients of the specific application. A framework that

9

can be extended using subclassing is called a white-box framework [JF88]. Most real-world frame-
works combine black-box with white-box issues and are therefore called gray-box frameworks.

Typically, applications use not only one framework, but several. An application may tie together a
framework for handling user-interfaces, another framework for the banking domain, and yet another
framework for handling persistence and database access.

An application framework is a framework that ties together a set of existing frameworks to cover most
aspects of a certain type of application. Strictly speaking, an application framework is just another
framework of a similar size as the frameworks it uses. Most developers, however, when speaking of an
application framework, refer to all involved frameworks, the primary application framework as well as
all the other frameworks it is based on (an application framework thereby may be viewed as some-
thing like a composite framework).

In software development based on application frameworks, applications (or systems) become exten-
sions of the application framework. They reuse the software architecture of this particular type of ap-
plication as defined by the application framework and its domain frameworks.

There are a number of key advantages to be gained from using application frameworks. The primary
technical advantage is that they provide design and code reuse. The larger and better an application
framework, the more design and code reuse becomes possible. Also, systems based on frameworks are
easier to maintain, because most key design and implementation decisions are localized in one place,
the framework.

The primary business advantages of design and code reuse are higher developer productivity and
shorter time-to-market of new applications. In addition, applications tend to be less buggy (they are
reusing mature implementations), and tend to look more homogenous (a suite of applications built
from the same framework has the same architecture and similar implementations).

2.1.3 Problems with frameworks
Software development in general, and object-oriented framework-based application development in
particular, is a non-trivial undertaking that comes with many problems. These include technical issues,
social and communication issues, project management issues, and developer organization issues.

This dissertation focuses on technical problems of design complexity. Fortunately, the problems pre-
sented here can be addressed largely independently of social, managerial, and organizational problems
as they emerge in real-world software development.

Based on four large case studies, Fichman and Kemerer note that a key challenge of adopting object
technology is the steep learning curve it takes until developers can get to work productively [FK97].
Bischofberger, Birrer, and Eggenschwiler note that beyond basic object-oriented software develop-
ment, object-oriented frameworks require an even higher up-front learning investment [BBE95]. In
terms of resources, it takes time and good developers until a project or an organization can start using
a framework successfully. Frameworks have a steep learning curve, because developers not only have
to understand single isolated classes, but abstract designs of several classes whose instances collabo-
rate for many different purposes.

What makes up this increased complexity of using object-oriented frameworks over the basic object
paradigm? The case studies cited above, current practice, and my own observations point to the fol-
lowing problems:

• Class complexity. Classes define the behavior of objects, their instances. Objects collaborate in
multiple contexts, for multiple purposes, exhibiting task-specific behavior. For complex objects,
the definition of this behavior in a single flat class interface is inadequate, and better mechanisms
that describe the different aspects of objects, are needed.

10

• Complementary focus on classes and collaborations. Objects collaborate with each other, for dif-
ferent purposes. Much of the complexity of frameworks goes into designing and implementing the
object collaboration behavior. By assigning responsibilities to individual objects, the focus on
overall collaborative behavior is lost. Thus, mechanisms to describe collaboration behavior are
needed.

• Object collaboration complexity. The overall collaborative behavior of framework objects and
their collaboration with client objects may become complex. To make the overall object collabo-
ration easier to understand and to manage, it needs to be broken up into independent pieces.
Means to describe task-specific collaborative behavior of objects are needed, as well as mecha-
nisms to compose these pieces of collaborative behavior to define the full object collaboration.

• Difficulties with using a framework. It is easy to use a framework in ways unforeseen and not in-
tended by their original designers. In particular, the requirements that a framework puts upon its
clients are frequently unclear and unspecified. Framework misuse causes constant work-arounds
for the client and may easily lead to unstable and buggy code. Thus, mechanisms are needed that
help prevent the (mis-)use of frameworks in ways not intended by the framework developers.

The first three list items are problems with understanding and learning an existing framework. All four
bullet list items are also problems with using a framework, as understanding it precedes using it.

These problems are a result of the complexity of designing and implementing a framework in the first
place. They arise in the initial (and continued) development of a framework. Developers do not have
(yet) adequate means to tackle these problems in the design and implementation process.

Any framework that is being used in real-world projects continuously evolves, because its underlying
domain keeps changing [Bäu98]. The design is in constant danger to deteriorate, and the implementa-
tion is in constant danger to get convoluted. After a few evolutionary steps, redesign and re-
implementation of the framework become a necessity. In our fast-paced time this must be carried out
as effectively as possible.

The thesis of this dissertation is that the listed problems of designing and understanding frameworks
can be eased significantly through the use of a role modeling approach to framework design. Role
modeling for framework design is an addition of the traditional class-based modeling approach. Be-
fore the thesis is laid out in more detail, however, the next section reviews related work and how it
addresses the presented problems.

2.2 Related work
Related work can be characterized along three dimensions: work on object-oriented design and
frameworks, work on modeling languages and methods for (possibly persistent) object-oriented sys-
tems, and work on separation of concerns techniques for object-oriented design and programming.

2.2.1 Object-oriented design
Objects interact in several different contexts at once. An early understanding of this observation can
be traced back to Smalltalk that provides developers with method categories to group methods into
[GR89] and Objective-C that lets developers specify different protocols of objects [Cox87]. In Small-
talk, each method category can be devoted to one particular aspect of the class, and it can be viewed
independently of the other aspects. However, Smalltalk provides a few standardized method catego-

11

ries, most notably “Accessing”, which suggest that method categories are more a convenience function
than a means of class design.

Programming languages like C++ and Java make it possible for classes to have different interfaces
through the use of multiple inheritance [Str94, AG96]. The presence of interfaces and multiple inheri-
tance explicitly acknowledges the need to view objects from different perspectives. Also, industry
component models like COM or CORBA [Box98, Sie96] and academic component models like those
of Wright, Darwin, and Rapide [All97, MDEK95, LKA+95] all allow components to have multiple
interfaces.

Also, it is now widely understood that object collaboration is a major design issue and should be ex-
plicitly focused on. The idea of object collaborations goes back to Beck and Cunningham [BC89] and
Wirfs-Brock et al. [WWW90]. However, the seminal paper is [HGG90], which introduces the concept
of contract as a formal description of object collaboration behavior. A contract abstracts from individ-
ual objects and focuses on the collaborative behavior of objects. Contracts can be extended and re-
fined, using a specialization mechanism.

2.2.2 Programming methods
For a few years now, researchers have been working on new techniques for making object systems
more readily composable from pieces than possible before. The understanding that objects and classes
need better code composition mechanisms than use and inheritance relationships is driving most of
this research.

In his work on the Demeter method, Lieberherr criticizes the tendency of classes to hard-code their
relationships [LH89, Lie95]. Class structures are hard to change if these structures are embedded in
the class implementations. He therefore suggests to abstract from concrete class structures and to de-
fine constraints on class structures only. These constraints do not describe a specific class structure but
rather a family of class structures that all fulfill the constraints. Object-oriented programs are gener-
ated from these constraints and from a set of propagation patterns. A propagation pattern describes
how to carry out a specific task in terms of traversing object structures and calculating results. The full
program is generated by a tool that takes the class structure constraints and propagation patterns, de-
rives a class structure, and assigns implementations to classes that reflect both the tasks defined by the
propagation patterns and the chosen class structure.

In their work on subject-oriented programming, Harrison and Ossher also point out that an object may
be viewed from many different angles [HO93, OKH+95]. Starting with this observation, they derive a
method that lets developers compose new applications from existing applications, where each applica-
tion may have an arbitrarily complex class model. They introduce composition operations for classes
and methods, and provide developers with tools to specify how to compose different applications. This
approach distinguishes itself from the other approaches in that it uses the traditional concepts of
classes and methods as its basic building blocks, and can be applied to existing applications.

In his work on the DASCO method, Rito-Silva describes techniques for the development of concurrent
distributed systems [Rit97]. He views applications as the result of a composition of different frame-
works, where each framework addresses one particular technical aspect of a system (for example, a
particular type of object synchronization or concurrency control). Composing classes from these
frameworks using multiple inheritance defines the final application, in which all different aspects
come together.

In their work on aspect-oriented programming, Kiczales et al. address the problem of “tangled code”,
a manifestation of the feature interaction problem [KLM+97, Lop97]. Tangled code is the phenome-
non that in many class implementations different technical issues come together. The implementation
of a single operation of a class might have to address issues of synchronization and concurrency, log-
ging and security, and others, before focusing on the primary domain task of the operation. Kiczales et

12

al. suggest that it is desirable to describe each of these aspects in a programming language of its own,
rather than using a generic common language. A dedicated tool, the Aspect Weaver, composes these
different programs for the different technical aspects, and generates a single resulting program. Intro-
ducing dedicated programming languages lets developers define programs dedicated to one particular
technical aspect. The approach thereby lets developers separate concerns and “untangle” class imple-
mentations. The approach promises higher flexibility and simpler maintainability and evolution.

In their work on role-oriented programming, VanHilst and Notkin view object-oriented designs as
compositions of object collaboration descriptions [Van97, VN96]. They describe object collaborations
as a set of roles, which objects in the collaboration play. They provide means to compose these object
collaborations. Their composition mechanism are parameterized types (templates in C++), for which
they provide elaborate handling guidelines.

In the context of database programming, Albano et al. describe how to implement data models with
roles [ABGO93]. Their database programming language Fibonacci lets developers describe data mod-
els in terms of roles objects play. Objects are fully hidden behind roles and programmers never get to
see an object except through a mediating role. Roles are described by role types, which are organized
in type hierarchies. For these type hierarchies, the usual subtyping mechanisms apply.

Database programming languages focus more on data structures and object-lifecycles than behavior
specification. Hence, Fibonacci is strong in the area of dynamically acquiring and loosing roles, as
may happen during the lifetime of an object. This is helpful for easing schema evolution, one of the
hard problems of database design and programming. However, this is not a topic of this dissertation.

2.2.3 Development methods
OOram is a full-fledged software development method that covers all relevant activities of the devel-
opment process [Ree96, RAB+92]. It was developed by Trygve Reenskaug et al. and has been in use
for many years. OOram is of particular importance to this dissertation, because it served as one of its
sources of inspiration.

OOram takes a different approach to modeling than traditional class based modeling. It focuses on
object collaborations, which it describes using role models. Objects in a collaboration play a role,
which is described using a type. Classes are irrelevant on this modeling level; they serve as imple-
mentation concepts only.

A role model describes just one particular object collaboration purpose, and is therefore composed
with other role models to fully determine object behavior and hence class implementations. The com-
position is called role model synthesis, and is supported by dedicated tools. A full object-oriented
system emerges as the composition of many role models. There is no intermediate concept (like the
framework concept), but only role models of growing complexity.

Andersen’s dissertation follows up on OOram [And97]. He rehabilitates the concept of class, which he
defines to model the information content of objects by abstracting from individual objects. Andersen
also emphasizes that role models are instance-level models that do not abstract from individual objects
but are always bound to specific objects. In contrast to this view, this dissertation views role models as
a specification of object collaboration tasks that may fit a possibly infinite set of object collaborations
at runtime.

Finally, Andersen’s work provides a formal foundation for the role model synthesis process of
OOram. This formal foundation is of particular importance for this dissertation, because the disserta-
tion does not present a new type specification mechanism but rather relies on existing ones. Ander-
son’s mechanism is one possible specification mechanism that can be used to formally specify role
models as used in this dissertation.

13

UML is currently becoming the dominating modeling language in the object-oriented world [UML97a,
UML 97b]. In UML, relationships between classes can be defined that are tagged at each end with a
so-called role name, a simple string that indicates the role an instance of the other class in the relation-
ship may play. It is possible to add additional specification using general UML mechanisms, but no
specific role modeling support is provided.

Next to basic role support on relationships between classes, UML also provides the concept of Col-
laboration that lets developers describe how objects are to collaborate for a specific task. The authors
of UML write that Collaborations serve to represent different things, including use-cases and OOram
role models. Collaborations let developers specify structure, but not behavior. Its expressive power is
largely equivalent to basic OOram role models. However, it is lacking more advanced features like
role model synthesis (composition of collaborations). This is where method extensions come into play.

Catalysis is a recent software development method for component-based software development with
UML. It is being developed by D’Souza and Wills [DW98]. It is based on UML and tries to leverage
its modeling capabilities as far as possible. Therefore, it does not introduce new concepts like role and
role model, but rather uses the concepts of interface and class diagram.

However, D’Souza and Wills use class diagrams and interfaces much like Reenskaug uses role models
and roles, except that they do not view their role–model–alike class diagrams as instance-level models,
but rather as type-level models. They use multiple inheritance as the composition mechanism for inter-
faces. They support interface specification and composition through lightweight formal modeling
based on pre-/postconditions and invariants.

However, much like OOram, Catalysis does not introduce an explicit framework concept as used in
this dissertation. Rather, they scale up using UML concepts only, which does not provide a dedicated
framework concept. Catalysis uses the term framework, but it refers to a single class diagram dedi-
cated to one particular purpose, much like a role model.

Object Role Modeling (ORM, [Hal96]) is a data modeling technique that extends ER modeling with
role modeling concepts. Similarly to UML, it lets developers tag the end of associations with role
names, thereby letting them indicate what the purpose of an entity type at an association end is. As
explained by Halpin in [Hal98], the differences between ORM and UML are on a fine-grained level,
for example in the details of how to attach meaning to roles. However, unlike UML, ORM provides no
means to specify behavior, as possible with UML collaborations. Like most data structure oriented
modeling techniques, ORM falls short when it comes to specifying collaborative behavior in object-
oriented design.

2.2.4 Role modeling concepts
Some related work adds directly to the role concept as a key modeling concept without trying to de-
velop a full-fledged design or programming method. Depending on the researchers’ background, such
related work has a specific focus like conceptual modeling, runtime configuration, or database design.

Kristensen and Osterbye introduce the role concept to the Scandinavian tradition of conceptual mod-
eling and programming [KO96a]. The role meta-concept is viewed as a specialization of the more
general concept meta-concept. Operations that are applicable to the concept meta-concept therefore
become applicable to the role meta-concept, for example, classification, aggregation, and specializa-
tion. The definition of a role is the result of an abstraction process from similar domain phenomena
(which are not necessarily domain objects). Roles can be aggregated to form aggregate roles, and they
can be specialized to form new derived roles. In Kristensen’s and Osterbye’s terminology, role in-
stances are attached to objects. While objects provide intrinsic properties, roles attach extrinsic prop-
erties to objects. Properties are both operations and attributes. Kristensen and Osterbye call the result-
ing concept instance conglomerate (object + attached roles) a subject.

14

Gottlob et al. [GSR96] discuss a role concept for better supporting the life-cycle of objects in object-
oriented databases. Long-lived objects, in particular those stored in a database, may have a complex
life-cycle. Gottlob et al. describe the lifecycle of an object as a succession of roles the object may take
on. At any one time, an object is an instance of exactly one class, but it may take on several roles.
Roles are modeled in role hierarchies, which are type hierarchies. An object that is in the particular
state of playing a certain role acts according to the role’s type definition in the role hierarchy. Gottlob
et al. provide a Smalltalk implementation that lets an object dynamically acquire and drop roles, even
if they are of the same role type. The Smalltalk implementation keeps the different roles synchronized.

Wieringa et al. also use roles for modeling object life-cycles [WJS95]. Their conceptual modeling ap-
proach is similar to Gottlob et al.’s and comprises role class hierarchies and dynamic role playing.
However, where Gottlob et al. provide a Smalltalk implementation of roles, Wieringa et al. provide a
formal specification of the metamodel behind roles and classes using order-sorted logic.

Also closely related to Gottlob et al.’s approach is the concept of role objects, as discussed by Bäumer
et al. [BRSW00]. A role object is an object that extends a core object for use in a specific context. The
core object provides all functionality that is independent of a specific context, and a role object pro-
vides all functionality that is needed in one specific context. A core object may provide many different
role objects so that it can operate in many different contexts in parallel. Of particular importance to
this dissertation is that role objects may be used to integrate frameworks. One framework may define a
core concept like Person, and further frameworks may define role objects that extend the core concept
for their particular use [BGK+97, RG98]. Then, role objects serve as a dynamic bridge between
frameworks. They are used to adapt a framework to unforeseen requirements.

The focus of the related work presented in this subsection is on the individual object and its roles.
None of the work addresses the collaborative behavior of objects through its roles, and none of the
work applies it to the level of framework design.

2.2.5 Object-oriented frameworks
The seminal paper on framework concepts is [JF88], where Johnson and Foote pick up the framework
concept and discuss many of its properties. They introduce the concepts of white-box and black-box
frameworks. They distinguish between classes, types, and protocols. The protocol of an object is the
set of methods (operations) that it understands. They use protocol as a synonym for type and argue
that it is to be treated differently from a class. A class implements a particular protocol, which points
to recent considerations of classes as implementation concepts only (rather than modeling concepts, as
defined by their original SIMULA-67 inventors [DH72]).

Frameworks were soon recognized as a means for achieving large-scale reuse. The Taligent frame-
works are a notable effort for building systems based on frameworks. This effort is also well pub-
lished, even though commercially it failed in the end. In a series of books [CP95, Tal95], Taligent
tried to introduce framework concepts and a lightweight terminology into the marketplace. They in-
troduce the concept of ensemble to mean the set of application-specific subclasses of frameworks that
make up an application. An ensemble draws on several frameworks at once. Furthermore, as already
suggested by Johnson and Foote through the introduction of white-box and black-box frameworks,
they make a clear distinction between the different interfaces clients may use of a framework, which
they call composition-focused and inheritance focused, respectively.

Frameworks are usually used in the larger context of object-oriented software architecture. Because
frameworks are always focused on a particular domain, they establish domain-specific software ar-
chitectures (DSSA’s). Bäumer describes an example of such a DSSA for interactive desktop applica-
tions [Bäu98, BGK+97]. He discusses a U-form layering structure of application systems, with appli-
cations on top of business section frameworks on top of business domain frameworks, on top of desk-
top/technology frameworks, on top of foundation frameworks. The layering structure takes on a U-

15

form, because layering is not strict, and any higher-layer framework makes use of the desk-
top/technology and the foundation framework layers. These two base layers form the containing bor-
ders of the jar-like U-Form. Therefore, this DSSA employs non-strict layering, a common property of
object-oriented systems.

Of particular interest is Bäumer’s adaptation of the connector concept from software architecture
[SG96] to object-oriented frameworks. He shows that frameworks are frequently connected using (in-
stantiations of) design patterns as connecting elements. The results of this dissertation support the im-
portance of this observation, and provide a more thorough basis for its discussion in the form of role
models. Role models may be design pattern instantiations (but need not!), and one of their purposes is
to connect frameworks with clients or other frameworks.

Further reports on successfully using object-oriented frameworks support the reuse claim [BCG95,
SBF96]. [Lew95] is a first compendium of concrete examples of frameworks from all kinds of do-
mains. Another forthcoming book by Fayad, Schmidt, and Johnson provides even more study material
[FSJ99].

2.2.6 Review of related work
The recent interest in separation of concerns approaches suggests that today’s design and implementa-
tion techniques need further improvement. The work presented in this dissertation is based on role
modeling, which is one of the separation of concerns approaches. None of the related work, be it on
individual design concepts or full design methods, on general programming or database programming,
or on frameworks or databases, utilizes role modeling for framework design. However, this is the core
them of this dissertation.

2.3 Thesis statement of dissertation
This subsection explains and refines the dissertation thesis. The initial thesis statement is:

Thesis statement (initial version)

Role modeling for framework design makes the design and documentation of object-oriented
frameworks easier than is possible with traditional class-based approaches.

Analysis of the initial thesis statement leads to three questions that need further discussion:

• What is the scope of “design and documentation”?

• What does “easier” mean? Can it be made more specific?

• Who is the subject that benefits from an increased ease of use?

The next subsections examine each question in turn.

2.3.1 What is the scope of “design and documentation”?
First, we need to distinguish between the different activities and the tangible and intangible artifacts of
framework-based application development. Figure 2-1 shows a diagram of these activities and arti-

16

facts. This diagram has been developed to explain the thesis and serves illustration purposes only. It is
not a complete description of development activities, dependencies, and artifacts.

In Figure 2-1, tangible and intangible artifacts are shown in large fonts, and activities relating artifacts
are shown in small font.

Application
Domain

Application
System

Framework
Design

Framework
Documentation

documentingdesigning

redesigning

understanding
applying/using

Figure 2-1: Activities and artifacts during framework design and application.

The diagram shows four artifacts: application domain, application system, framework design, and
framework documentation. It shows the distinction between artifacts and activities well. For example,
framework design is an artifact, while designing is an activity. Of the artifacts, only documentation is
fully tangible. The application domain, the application system, and the framework design artifacts are
partially or fully abstract.

It is important to distinguish between a framework’s design and its documentation. The framework
design comprises all the ideas and concepts involved in a framework. The framework documentation
makes them explicit as far as possible, but is never able to fully reveal them. Rather, the documenta-
tion describes those aspects of the design that are most important for developers to know who try to
understand the framework.

The artifacts are related by activities. Designing a system in an application domain leads to a design.
Documenting the design leads to documentation. Reading documentation and working with a frame-
work leads to understanding the framework design. Applying the framework leads to an application.
Etc.

Role modeling for framework design is a method that supports human activities. It is also reflected in
the artifacts, for example in the documentation, but its primary purpose is to support humans in carry-
ing out activities based on these artifacts. Therefore, the degree to which role modeling helps with
these activities is the primary measure of its utility.

The diagram shows five activities: designing, redesigning, applying/using, documenting, and under-
standing.

Let us assume that someone versed in role modeling for framework design carries out these activities.
Also, let us assume that role modeling has already been used for the existing frameworks and their
documentation. Then, any redesign activity becomes a design activity that takes both the application
domain and an existing design into account. Because the existing framework design is already a result
of designing for the application domain, no qualitative difference exists, and redesign can safely be
subsumed under design.

Moreover, documenting a framework using role modeling is an activity by which developers select
certain aspects of a framework and document them using whatever scheme seems appropriate, here
role modeling. The decision of which aspect is considered important is independent of the deployed
technique. Therefore, the documentation activity is largely independent of the role modeling approach.

This discussion leaves us with designing, applying/using, and understanding object-oriented frame-
works. The refined thesis statement now becomes:

17

Thesis statement (first intermediate version)

Role modeling for framework design makes the following activities easier to carry out than is
possible with traditional class-based approaches:

• designing and redesigning a framework,

• learning a framework from its documentation,

• using a framework that is already understood.

What about frameworks that have not been designed and documented with role modeling in mind?
Can role modeling help here as well? As I have demonstrated, role modeling can be used as an ana-
lytical means to reengineer existing designs [Rie97]. Naturally then, the new design can be expressed
well using role modeling.

However, such a reengineering activity is also an example of the more general design activity for ob-
ject-oriented frameworks. Here, the application domain is the underlying domain of the existing
framework, and the reengineering activity becomes a design activity for the application domain taking
the purpose and structure of the existing framework into account. Therefore, reengineering is also sub-
sumed under design.

2.3.2 What does “easier” mean?
“Easier” is used in the sense of “more effective” in handling the problems of framework-based appli-
cation development as discussed earlier in Section 2.1.3.

The refined thesis statement of the dissertation now becomes:

Thesis statement (second intermediate version)

Role modeling for framework design makes the following activities easier to carry out than is
possible with traditional class-based approaches:

• designing and redesigning a framework,

• learning a framework from its documentation,

• using a framework that is already understood.

The following problems are addressed and their severity is reduced:

• complexity of classes,

• complexity of object collaboration,

• clarity of requirements put upon use-clients.

What remains to be done is to define an evaluation strategy that lets us compare the effectiveness of
the traditional class-based approach with role modeling for framework design as presented in this dis-
sertation.

The phrase “[problem] severity is reduced” does not lay claim to a quantitative measure. In principle,
showing only a tiny improvement over the existing situation would validate the dissertation thesis.
While a correct solution, this is certainly not a satisfying solution. However, no quantitative measure
or metric is used to validate the claims; rather, the dissertation uses a case study based approach.

18

If the dissertation were to measure the improvement in ease of use, it would have to introduce a metric
that measures the reduction in complexity as experienced by a user. In principle, this means setting up
and conducting a psychological experiment for framework design and use tasks of non-trivial com-
plexity. Such an experiment is beyond the scope of this dissertation and can only be carried out by
trained psychologists.

A less aggressive alternative would be to define quantitative metrics of complexity in framework de-
sign. Such metrics could then be calculated for a traditional framework design and for a framework
design based on role modeling. A “better” resulting metric value can then be interpreted as a valida-
tion of the dissertation thesis. The problem of this approach is that it is difficult to show that a metric
adequately reflects the design complexity as perceived by a human. Again, psychological experiments
would be needed to show this.

As a consequence, I resort to using a qualitative approach based on case studies to validate the disser-
tation thesis. Chapters 6 to 8 present several case studies and Chapter 9 evaluates the thesis based on
experiences made in the case studies.

2.3.3 Who is the subject?
Role modeling for framework design makes life easier for expert framework developers and users. It
is tempting to conclude that role modeling helps novices and experts alike. However, I have no hard
evidence that role modeling works for novices to the same extent that it does work for experts. Role
modeling for framework design is a more comprehensive method than traditional class based model-
ing. It requires experience with framework design and use. If this experience is not given, role model-
ing for framework design may be too demanding a method for some developers.

Therefore, the thesis statement of the dissertation only claims that the presented approach helps expert
developers that already understand class-based modeling and framework design well. This is well in
line with the understanding that the presented approach is an extension of the existing class-based
modeling approach, rather than a replacement. One needs to understand the fundamental modeling
concepts first, before adding new ones.

2.3.4 Final version of the thesis
After the review of these three issues with the initial thesis statement, the final statement now be-
comes:

Thesis statement (final version)

Role modeling for framework design makes the following activities easier to carry out for the
expert framework developer and user than is possible with traditional class-based approaches:

• designing and redesigning a framework,

• learning a framework from its documentation,

• using a framework that is already understood.

The following problems are addressed and their severity is reduced:

• complexity of classes,

• complexity of object collaboration,

• clarity of requirements put upon use-clients.

19

The three activity dimensions designing/redesigning, learning, and using a framework all relate
equally well to the three problem dimensions complexity of classes, complexity of object collabora-
tion, and clarity of requirements put upon use-clients. The result is a 3 x 3 matrix of activity/problem
pairs, as shown in Table 2-1.

(activity, problem)
matrix

designing and redes-
igning a framework

learning a framework
from its documentation

using an already un-
derstood framework

complexity of
classes

Validity to be shown. Validity to be shown. Validity to be shown.

complexity of
object collaboration

Validity to be shown. Validity to be shown. Validity to be shown.

clarity of requirements
put upon use-clients

Validity to be shown. Validity to be shown. Validity to be shown.

Table 2-1: The dissertation thesis broken up into nine sub-theses.

The thesis validation of Chapter 9 uses this matrix as the basis of the validation strategy. For each pair,
an argument is made on why the specific problem is reduced in its severity when carrying out the as-
sociated activity. The validation of the overall thesis becomes the sum of the validations of the in-
vidual sub-theses.

The remainder of this work explains and validates the dissertation thesis.

20

3
Role Modeling

Object-oriented modeling is based on the concepts of object, class, and their relationships. This chap-
ter extends these concepts with new role modeling concepts. It starts out with the definition of con-
cepts like object, class, and class model, to which it adds the definitions of the concepts of role, role
type, role model, and role constraint. This leads to an extended object modeling terminology, based
not only on objects and classes, but on roles and role types, as well as class models and role models.
The concepts for framework design, defined in the following chapter, build on this foundation.

3.1 Chapter overview
This chapter presents two categories of modeling concepts:

• Traditional object modeling concepts. This part defines the concepts object and value, class, class
type, and value type, association and association description, aggregation and aggregation de-
scription, inheritance, object collaboration, and class model. This section provides the object mod-
eling basis.

• New role modeling concepts. This part defines the concepts role, role type, role constraint, object
collaboration task, and role model. It also revises and extends the object modeling basis to better
support role modeling. It presents a novel perspective on the role concept, as needed for frame-
work design and documentation.

Appendix B, the glossary, lists all concept definitions in alphabetical order. Appendix C, the notation
guide, summarizes the visual notation used in the dissertation. The visual notation is derived from
UML, with additions only for those concepts not known to UML.

22

This and the next chapter use the design of a graphical figure framework as a running example. This
chapter discusses the class model only; the next chapter discusses its definition as a framework and its
use by clients like drawing editors.

Graphical figure objects are part of a drawing, as shown by and manipulated through a drawing editor.
Figure 3-1 shows the graphical user interface of such an example drawing editor. At the center of the
figure is a drawing area, which contains several graphical figures.

Figure 3-1: Screenshot of an example drawing editor (JHotDraw).

Graphical figures may be generic figures like polygon, rectangle, circle, and text figures. They may
also be domain-specific figures like UML-style object, interface, association, and aggregation figures
as used in a UML diagram editor, or like animal or circus figures as used in a drawing editor for chil-
dren.

Some of the figures are composite graphical figures. A composite graphical figure is a figure that is
composed from further embedded figures (it aggregates these sub-figures). Examples of composite
graphical figures are predefined figures like the UML-style class or interface figures, which are build
from polygon, rectangle, and text figures, and user-defined figures like those composed by a grouping
mechanism as found in drawing editors. Thus, a composite graphical figure can be realized as a hier-
archy of figure objects.

Figure 3-2 illustrates the runtime object hierarchy for the graphical figures of the drawing from Figure
3-1.

Section 3.2 defines the basic object modeling terminology. It uses the graphical figure class hierarchy
indicated above as its illustrating example. The hierarchy is presented as a class model.

23

d: Drawing

r: Rectanglep: Polygon g: Group hw: Text

wr1: Rectanglebr1: Rectangle br2: Rectangle

...

...
Figure 3-2: Object hierarchy of graphical figures.

Section 3.3 defines the role modeling extension of the object modeling basis. It enhances the graphical
figure example with roles and role models to show the structure of object collaborations.

The concepts are presented in a programming language independent way. They do not reflect the full
complexity of today’s programming languages. Chapter 5 shows how the modeling concepts map on
other notations and programming languages like UML, Java, C++ and Smalltalk.

3.2 Object modeling fundamentals
Objects and classes are the traditional modeling concepts of object-oriented software systems. This
section defines and illustrates the concepts of object, class, class type, operation, value, value type, and
interpretation function. It also defines the concepts of association and association description, aggre-
gation and aggregation description, and inheritance. Finally, it defines the concepts of object collabo-
ration and class model. Some definitions are preliminary and are extended in the subsequent sections
when the role modeling concepts are introduced.

This section is not meant to provide a comprehensive object modeling terminology. It only defines the
most fundamental concepts, on which the subsequent role modeling concepts build. It omits most of
the complexity found in industrial-strength modeling approaches like UML [UML97a, UML97b] or
OML [FHG98], which provide a much larger variety of modeling concepts than those presented here.

3.2.1 Object and class (definition)
The concepts of object and class can be defined from a technical or a conceptual perspective. We use
the technical definitions, and view the conceptual definitions as a description of the purpose of objects
and classes.

Definition 3-1: Object

An object is an opaque runtime entity of a system that provides state and operations to query
and change that state. An object has a lifecycle: It is created, may change over time, and is
possibly deleted. Objects can be identified unambiguously; identity is an intrinsic property of
every object.

24

An object represents a concrete or abstract phenomenon from a domain. The domain may be a non-
technical application domain like banking or insurance, or it may be a technical application domain
like multithreading, synchronization, or distribution. This second modeling-oriented definition of ob-
jects as representations of phenomena complements the first definition of objects as encapsulated state
with operations.

Examples of objects are all kinds of graphical figures, for example polygons, rectangles, triangles, and
circles, but also higher-level graphical figures, like UML-style class, interface, association, and in-
heritance figures.

Figure 3-3 shows the visual representation of the object concept as used in this work. In such a dia-
gram, an object typically has a name, like “aFigure”, and provides its class name, like “Polygon”, set
in parenthesis below the object name.

p: Polygon

Figure 3-3: Example of an object called p of class Polygon.

An object is an instance of a class. The class defines the properties of its instances.

Definition 3-2: Class

A class is the definition of a (possibly infinite) set of objects, called its instances. A class de-
fines the behavior of its instances using a class type. A class type is a type, specified using an
appropriate type specification mechanism.

With each class, exactly one class type is associated. The class type defines the operations applicable
to an instance of the class in terms of the effects these operations have on its state and in terms of the
values returned to an object calling an operation.

A class is the result of an abstraction process from several similar objects from a domain. It describes
the common properties of all its instances and ignores any properties that are irrelevant for the mod-
eling task at hand. Again, this second definition of class as the abstraction from similar recurring phe-
nomena complements the first definition of class as the definition of the common properties of a set of
objects.

Examples of classes are PolygonFigure, RectangleFigure, and TextFigure. Some visual instances are
shown in Figure 3-1 as polygons, rectangles, texts on a drawing area, and some regular instances are
shown in Figure 3-2 as objects in an object diagram. Similarly, more complex examples are the
UmlClassFigure and UmlAssociationFigure classes, as they are needed for a UML-diagram drawing
editor.

An object may be an immediate (or direct) instance of a class or not. An immediate instance is an ob-
ject that conforms to a class without obeying further specified properties. An object that conforms to a
class but that is not an immediate instance of this class typically is an instance of a subclass of this
class (see Section 3.2.5).

A class may be abstract or concrete. An abstract class cannot have immediate instances. A concrete
class may have immediate instances. The aforementioned PolygonFigure, RectangleFigure, and
TextFigure classes are concrete classes. The class Figure, which represents all properties common to
figure objects, is an abstract class, of which no direct instances may exist.

Figure 3-4 shows the visual representation of the class concept. If the class name is set in Italics, the
class is an abstract class. If not, it is a concrete class. The body of the visual class representation shows
parts of its class type, as defined below.

25

Figure

void draw(ref<Graphics> context);
void drawOutline(ref<Graphics> context);
ref<Figure> parent;
boolean hasParent();
...

Figure 3-4: Example of a class, here the Figure class.

The concept of class is understood and used here as a modeling concept. On an implementation level,
a design-level class may be represented using any appropriate mechanism. In Java, for example, de-
sign-level classes are frequently expressed using Java interfaces, and Java classes are used to provide
implementations of the design-level classes.

The class type can be specified using an appropriate type specification mechanism, for example Lis-
kov & Wing [LW93a, LW93b, LW94] or Abadi & Cardelli [AC96]. The only precondition is that the
chosen specification mechanism must provide a proper composition operator on types. This is needed,
as shown in the Section 3.3, to define a class type as the composition of several role types.

Figure 3-5 shows the visual representation of the type concept.

Figure

void draw(ref<Graphics> context);
void drawOutline(ref<Graphics> context);
ref<Figure> parent;
boolean hasParent();
...

Figure 3-5: Example of a type, here the class type of Figure.

Class types, role types, and value types (see below) are expressed and shown using the same visual
symbol.

3.2.2 Value and value type (definition)
Objects and values are complementary modeling concepts of equal importance [Mac82, BRS+98].

Definition 3-3: Value

A value is an atomic entity from the abstract and invisible universe of values. A value cannot
be perceived directly, but only through occurrences of its representations. The representations
are interpreted by means of interpretation functions. These interpretation functions return
further (occurrences of representations of) values; they do not change the value.

In contrast to objects, values do not live in time: they are not created, do not change, and are not de-
stroyed.

A value is always bound to an attribute of an object. An attribute is a name/value pair that puts a label,
the attribute name, on some aspect of the object’s state space, the attribute value, so that for a given
object, the attribute’s value can be named, assessed, and changed.

Examples of values are integers, strings, but also domain-specific values like account numbers, secu-
rity tickets, and monetary amounts. Values of particular importance to object systems are object refer-
ences, because they enable objects to communicate. The so-called primitive values like integers,
strings, and object references are typically directly supported by a modeling notation or a program-
ming language, while domain-specific values need to be defined by programmers.

26

Definition 3-4: Value type

A value type is a type that specifies a set of values together with the interpretation functions
applicable to representations of members of this set.

Value types (or type constructors for a specific kind of value type) may be directly provided by a
modeling language, like integer, string, and object reference. Or, value types may be domain-specific
and introduced by programmers, like Color, 2DPoint and 3DPoint, etc.

For a given object attribute, an attribute type is defined, which determines the set of possible values
that can be assigned to the attribute. An attribute type is always a value type.

There are no universal context-independent criteria to decide whether some domain phenomenon
should be modeled as an object or a value. The purpose of the model and the suitability of its possible
implementations always drive such a decision.

3.2.3 Figure class (example)
As explained, a class defines the state and behavior of its instances. It does so with the help of a class
type. In the simplest case, a class type is a set of attributes, a set of constraints on the attribute values, a
set of transitions between allowed states, and a set of operations that trigger state transitions. The con-
straints on the attributes determine the subspace of the overall state space defined by the cross product
of the attributes’ value types. Next to this simple scheme, more elaborate type specification mecha-
nisms can be used.

For the purposes of this work every type specification mechanism is suitable, as long as it provides a
well-defined composition operation on types. To better illustrate the examples, and to simplify their
discussion, we use a simple type specification mechanism. A type is described as a set of operations, a
set of attributes, and an informal annotation that describes its meaning (either as comments in the
specification text or in the main body of the respective section). The possible state transitions are im-
plied by the operation definitions.

For example, the class type of class Figure defines an attribute with the name “parent” that is of type
“object reference to Figure object”. Also, class Figure may have an attribute called extent of value
type rectangle, with the constraint that the rectangle must have a positive non-zero extent. (Please note
that the value type rectangle is a mathematical concept, hence a value type, while the class Rectangle-
Figure is a graphical figure class, which may not only have an attribute extent of type rectangle, but
many other attributes, like fill color, line stroke color, or line stroke width.)

Specification 3-1 describes the class Figure and its class type. Next to the Figure class, it uses a
Graphics class that represents the drawing area. The specification uses Java syntax-alike constructs.
The uncommon syntax “ref<Figure>” stands for the value type “object reference to Figure object”.
Thus, “ref” is a type constructor for object reference value types. This pseudo-code serves illustration
purposes only. It is not based on a full-fledged specification or programming language.

class Figure {
// Provide basic domain functionality of figures.
// Figures have origin, extent. Can be drawn, moved, and resized.
// Figures have a handle by which they are manipulated.
point origin;
rectangle extent;
void draw(ref<Graphics> context);
void drawOutline(ref<Graphics> context);
void place(point location);
void move(int dx, int dy);
void resize(int handle, int dx, int dy);

27

// Provide parent reference; may be null for root.
// Parent object must be of type Figure.
ref<Figure> parent;
boolean hasParent();
void setParent(ref<Figure> parent);

// Manage objects registered as dependents.
// Notify them about state changes of the figure.
// Dependents must be of type FigureObserver.
collection<ref<FigureObserver>> dependents;
boolean hasObserver(ref<FigureObserver> observer);
void addObserver(ref<FigureObserver> observer);
void removeObserver(ref<FigureObserver> observer);

// Generically manage properties of figure.
// Examples properties are fill color, frame color, line stroke.
// Properties may be any kind of Object.
collection<ref<Object>> properties;
void hasProperty(string name);
void getProperty(string name);
void setProperty(string name, ref<Object> property);
void unsetProperty(string name);

... More definition.
}

Specification 3-1: Example specification of Figure class.

This example class defines its instances’ state space together with operations to change it. The exis-
tence of an attribute in the class type definition implies an operation to get the attribute’s value, but not
necessarily an operation to set it. A set-operation needs to be specified explicitly.

3.2.4 Relationships and relationship descriptions (definition)
At runtime, objects are connected with each other. Such a connection may be implemented in different
ways. On the modeling level, we only need to express that we allow for a certain type of connection
between objects.

A connection between two objects is called an object relationship. For the object modeling basis, we
consider two types of object relationships: object associations and object aggregations. These are run-
time entities stating that two objects are connected with each other in a particular way.

An object relationship description defines what a valid object relationship is. We consider object asso-
ciation descriptions and object aggregation descriptions. These relationship descriptions can be anno-
tated to add meaning and more precisely specify the set of allowed relationships according to that re-
lationship description.

Object associations may be unidirectional or bi-directional. Object aggregations are always unidirec-
tional. However, this information is effectively an annotation of the relationship description that is
used to help implementing the model. The overall graph of object relationship descriptions is undi-
rected, independently of the specification of individual relationship descriptions.

3.2.4.1 Association and association description (definition)

Objects relate to each other by means of object associations.

Definition 3-5: Object association

An object association is a pair of objects (x, y), stating that an object x holds a reference to
another object y of which it may or may not make use.

28

Holding a reference means that a parameter of an invocation of an operation of object x or that an at-
tribute of object x has the reference to y as its value. An example of an object association is (aText,
aUmlClass), which indicates that the object aText is associated with the object aUmlClass (for exam-
ple, by means of its parent attribute).

Figure 3-6 shows the visual representation of a unidirectional object association.

v: DrawingView g: Group

Figure 3-6: Example of an association between two objects.

Object associations may be bi-directional, which means that for a given association (x, y), the inverse
(y, x) exists. This is visually shown through the omission of the arrowhead, see Figure 3-7.

g: Group d: Drawing

Figure 3-7: Example of a bi-directional association between two objects.

Classes prescribe how their instances may relate to each other by means of object association descrip-
tions.

Definition 3-6: Object association description

An object association description is a pair of types (X, Y) that determines possible runtime
object associations. An association between two objects (x, y) conforms to the association de-
scription if x is of type X or a subtype of X, and if y is of type Y or a subtype of Y.

When speaking of an association description between two classes, the class types of the classes are
meant.

Object association descriptions between classes are specifications of how instances of the classes may
relate to each other at runtime. A specific object association is called a valid object association with
respect to an object association description if it conforms to the description.

Figure 3-8 shows the visual representation of an object association description for unidirectional ob-
ject associations, and Figure 3-9 shows the visual representation of an object association description
for bi-directional object associations.

DrawingView Figure0..*0..*

Figure 3-8: Example of a unidirectional object association description.

FigureObserver Figure0..*

Figure 3-9: Example of a bi-directional object association description.

29

Being unidirectional or being bi-directional are annotations on the first or second element of the pair
representing the object association description. They add meaning to the association description that
can be used in the implementation of the design. However, the underlying graph is still undirected.

Object association descriptions (and object aggregation descriptions, see below) are annotated with
further information. Each annotation is tied to one end of the description. Examples of annotations are
the name of the description, the cardinality of the source or target, and possible existence dependency
constraints.

For example, Figures 3-8 and 3-9 annotate the association descriptions with the cardinality of runtime
object associations. If no cardinality is given, a default value of 0..1 is assumed.

3.2.4.2 Aggregation and aggregation description (definition)

Objects also relate to each other by means of aggregation.

Definition 3-7: Object aggregation

An object aggregation is a pair of objects (x, y), stating that an object x aggregates an object y
as a part of it. To aggregate an object means to control it, not only to make use of it, but to
determine its lifetime and accessibility as well.

One object may aggregate several other objects, but may itself be aggregated at maximum once. Ob-
ject aggregations form acyclic object hierarchies. Odell gives an in-depth discussion of the concept of
aggregation [Ode98]. An example of an aggregation is (aUmlClass, aText), which indicates that the
object aUmlClass aggregates the object aText (for example to display the class name).

Figure 3-10 shows the visual representation of an aggregation. It is distinguished from an association
through the diamond on the side of the aggregating object.

t: Textg: Group

Figure 3-10: Example of an aggregation between two objects.

Classes prescribe how their instances may relate to each other by means of aggregation descriptions.

Definition 3-8: Object aggregation description

An object aggregation description is a pair of types (X, Y) that determines possible runtime
object aggregations. An aggregation between two objects (x, y) conforms to the aggregation
description if x is of type X or a subtype of X, and if y is of type Y or a subtype of Y.

When speaking of an association description between two classes, the class types of the classes are
meant.

Object aggregation descriptions between classes are specifications of how instances of the classes may
aggregate each other at runtime. A specific object aggregation is called a valid object aggregation with
respect to an object aggregation description if it conforms to the description.

Figure 3-11 shows the visual representation of an aggregation description.

Like object association descriptions, aggregation descriptions are not aggregations but rather descrip-
tions of them. Aggregation descriptions provide information about the allowed runtime aggregations
like cardinality of the aggregated objects, etc. In an aggregation description, the cardinality annotation

30

of the aggregating class is always 0..1; thus the annotation can be omitted in a figure depicting the ag-
gregation description.

Drawing Figure0..*

Figure 3-11: Example of an aggregation description between two classes.

3.2.5 Inheritance (definition)
Classes may inherit from each other. Inheritance is understood here as a modeling concept to define
specialization/generalization hierarchies rather than as a construct to reuse code.

Definition 3-9: Inheritance

An inheritance is a pair of classes (X, Y) such that any instance of class Y can be substituted
in a context where an instance of class X is expected.

X is called the superclass of Y and Y is called the subclass of X.

Conceptually speaking, the concept modeled by class Y is a specialization of the concept modeled by
class X and the concept modeled by class X is a generalization of the concept modeled by class Y. The
pair (Figure, RectangleFigure) is an example of inheritance. It indicates that RectangleFigure is a sub-
class of Figure.

Wegener and Zdonik discuss in more detail what “substituted in a context where an instance of class X
is expected” means [WZ88]. Further definitions of substitutability have been given by Liskov [Lis88],
Liskov and Wing [LW93a, LW93b, LW94], Abadi and Cardelli [AC96], and others.

We use single inheritance only. Thus, for a given inheritance (X, Y), there may not be another inheri-
tance (Z, Y) with Z ≠ X. (This will seem less a restriction, once role types are introduced.)

Figure 3-12 illustrates the visual representation of the inheritance concept.

CompositeFigure

collection<ref<Figure>> children;
boolean hasChild(ref<Figure> child);
void addChild(ref<Figure> child);
void removeChild(ref<Figure> child);
...

Figure

void draw(ref<Graphics> context);
void drawOutline(ref<Graphics> context);
ref<Figure> parent;
boolean hasParent();
...

Figure 3-12: Example of an inheritance between two classes.

31

According to the abstract superclass rule, a class should not inherit from a concrete class [Hür94].
Thus, in a class inheritance hierarchy all leaf classes should be concrete classes, and all other classes
are abstract classes.

In practice, this rule is often relaxed, and concrete classes inherit from concrete classes. If done right,
this is not a problem, because the concrete superclass actually assumes two different roles: one as an
abstract superclass for subclasses and one as a concrete class that is readily instantiable by use-clients.

3.2.6 Object collaboration and class model (definition)
For modeling object systems, we must define what a system is. Moreover, we are not interested in just
about any system, but only those considered valid, because only they provide both expected and useful
behavior.

At runtime, an object system is a set of objects that relate to each other by means of object associa-
tions and aggregations. Which of the possibly infinite number of object systems is a valid one and
which is not? Object collaborations and class models provide the necessary means to better define
what a valid system is.

Definition 3-10: Object collaboration

An object collaboration is a set of objects that relate to each other by object relationships.

An object system is an object collaboration. An object collaboration or an object system is said to be
valid if it conforms to a class model.

Definition 3-11: Class model

A class model is a set of classes that relate to each other by inheritance and object relationship
descriptions. The class relationship graph must be non-partitioned.

The class relationship graph is the graph of all object relationship descriptions, which may be either
object association or object aggregation descriptions. The graph is undirected and non-partitioned.

A class model acts as a specification of a (possibly infinite) set of runtime object collaborations. Its
purpose is to define what a valid object collaboration is and what not. If an object collaboration is an
element of the set of object collaborations specified by the class model, it is said to conform to the
class model, and hence is said to be a valid object collaboration.

3.2.7 Figure class model (example)
We can now present a first class model. We use the classes Figure, PolygonFigure, RectangleFigure,
TextFigure, CompositeFigure, GroupFigure, UmlClassFigure, and UmlAssociationFigure. Figure and
CompositeFigure are abstract classes, while all other classes are concrete classes.

Figure 3-2 presents an example object collaboration. A few non-composite as well as a few composite
objects can be seen. To understand the structure of this object hierarchy, the classes Figure and Com-
positeFigure need to be defined. Class Figure is described in the previous class example subsection,
and class CompositeFigure is described in Specification 3-2.

32

class CompositeFigure extends Figure {
// Manage child figure objects.
// Child figures must be of type Figure.
collection<ref<Figure>> children;
boolean hasChild(ref<Figure> child);
void addChild(ref<Figure> child);
void removeChild(ref<Figure> child);

... More definition.
}

Specification 3-2: Example specification of CompositeFigure class.

The class CompositeFigure defines what it means to be a composite figure object: it may have child
objects, aggregated by the very composite object. Therefore, all classes whose instances are composite
figure objects inherit from CompositeFigure.

The classes PolygonFigure, RectangleFigure, and TextFigure are direct subclasses of Figure. Thus,
they represent non-composite figure objects. The classes GroupFigure, UmlClassFigure, and UmlAs-
sociationFigure are subclasses of CompositeFigure. Thus, they represent composite figure objects.

Figure 3-13 shows the resulting class model.

UmlClassFigure

RectangleFigure

FigureObserver

CompositeFigure

Figure

GroupFigure

Object

TextFigure

dependents

children

properties

parent

0..*

0..*

1..*

0..1

Figure 3-13: Class model of Figure example.

Figure 3-13 expresses the concept of composite figure object by means of the object aggregation de-
scription between the CompositeFigure and Figure classes. The possibility to traverse an object hierar-
chy from the leaves up is expressed by the parent association description from Figure to Composite-
Figure. The object associations between a graphical figure and its dependents are shown by an asso-
ciation description between Figure and FigureObserver. Finally, an object association description be-
tween Figure and Object shows how a figure provides its properties to clients.

33

The association descriptions between the composite figure classes UmlAssociationFigure and
UmlClassFigure and the primitive figure object classes PolygonFigure, RectangleFigure and TextFig-
ure are omitted.

3.3 Role modeling extensions
This section extends the concepts defined in the previous section with role modeling concepts. It in-
troduces new concepts and revises old ones.

Object collaborations are described as interacting objects that play roles to provide predefined behav-
ior. Because an object may play several roles in an object collaboration, the collaboration itself is bro-
ken up into pieces, called object collaboration tasks. Each object collaboration task is described by a
role model, and a role type from the role model describes each role in the collaboration task. A role
model describes the collaboration task as a set of role types and their relationships, independent of
other collaboration tasks.

A role model describes the set of valid object collaboration tasks, much like a class model describes
the set of valid object collaborations. Also, a class model is broken up into different role models, much
like an object collaboration is broken up into collaboration tasks. The collaboration tasks compose to
become the full object collaboration, and the role models compose to become the full class model.
Role models thereby separate the different concerns involved in a class model and reduce the com-
plexity of designing and understanding it.

This section defines the concepts role and role type, role constraint, object collaboration task and role
model. The class and class model concepts are extended to integrate smoothly with the role modeling
concepts. The Figure example is revised in light of the new modeling concepts.

3.3.1 Role and role type (definition)
Roles are observable behavioral aspects of objects. A role is described by a role type.

Definition 3-12: Role

A role is an observable behavioral aspect of an object.

An object, which provides a particular role, is said to play that role.

An object may play several roles at once (which every non-trivial object does). The roles, which an
object plays, interact, and an operation called in the context of one role can easily lead to the object
acting in the context of another role. The set of roles an object is playing is called the object’s role set.

A role represents the behavior of an object with respect to a specific object collaboration task. Objects
as phenomena from a domain typically behave in many different ways, acting in different use-
contexts. Therefore, in each context, an object plays a different role. The role is determined by the
view the client holds on the object playing the role.

Each graphical figure object provides a set of roles to clients. Among these are roles that let clients
draw the object, traverse the object hierarchy, make the object persistent, and inform dependent ob-
jects about state changes.

A role type abstracts from the behavior of similar roles.

34

Definition 3-13: Role type

A role type is a type that defines the behavior of a role an object may play. It defines the op-
erations and the state model of the role, as well as the associated semantics.

An object’s behavior is defined by the composition of all role types of all roles it may play. Different
objects may play a role that is defined by the same role type. Thus, a role type is (in principle) inde-
pendent of a particular object or class.

A role type is the result of an abstraction process from similar behavioral aspects of objects from a
domain, much like classes are the abstraction from structurally and behaviorally similar objects. In
contrast to a class that fully defines an object, a role type only defines one possible behavioral aspect
of an object.

A role type is visually represented as a type. For example, Figure 3-14 shows the Figure role type.

Figure

point origin;
rectangle extent;
void draw(ref<Graphics> context);
void drawOutline(ref<Graphics> context);
...

Figure 3-14: Example of a role type.

Examples of role types are the type definitions of the roles mentioned above. These role types might
be named Figure, Child, and Subject. The Figure role type defines the domain-specific behavior of
figure objects, like its capability to draw itself on some drawing area. It ignores other aspects like its
child behavior in an object hierarchy.

If a textual specification of a role type is given, it is not necessary to repeat the type specification as
part of the visual representation in a diagram. It is sufficient to provide the name. Figure 3-15 shows
this convenience shortcut for the Figure, Child, and Subject role types.

Figure SubjectChild

Figure 3-15: Example role types.

Some role types may have no operations associated with them. For example, client role types fre-
quently specify only behavior of objects, but no operations. (A client acts according to its role type
specification, but it does not offer operations for other objects to call back.)

Definition 3-14: No-operation role type (no-op role type)

A no-operation role type is a role type that defines no operations.

Still, behavioral semantics may be associated with such no-operation role types. This is sometimes the
case, but not always. But even if no semantics are associated with a no-operation role type, the role
type still serves a useful purpose as a handle for a role played by an object.

Definition 3-15: No-semantics role type

A no-semantics role type is a no-operation role type that defines neither state nor behavior.

35

No-semantics role types are used to designate objects whose references are passed around but which
are not made use of in the context of the current role model. No-semantics role types can be attached
to a class after it has been defined.

For pragmatic purposes, diagrams identify no-operation role types by a mark in their upper right cor-
ner. Figure 3-16 shows an example.

Client

Figure 3-16: Example no-op role type.

The importance of no-operation and no-semantics role types will become apparent in the context of
role models (see Subsection 3.3.5) and class models (see Subsection 3.3.9).

3.3.2 Figure, Child, etc. (example)
Specification 3-3 describes the Figure, Child, and Subject role types:

// Provide basic domain functionality of figures.
// Figures have origin, extent. Can be drawn, moved, and resized.
// Figures have a handle by which they are manipulated.
roletype Figure {

point origin;
rectangle extent;
void draw(ref<Graphics> context);
void drawOutline(ref<Graphics> context);
void place(point location);
void move(int dx, int dy);
void resize(int handle, int dx, int dy);

}

// Provide parent reference; may be null.
// Parent object must be of type Parent.
roletype Child {

ref<Parent> parent;
boolean hasParent();
void setParent(ref<Parent> parent);

}

// Manage objects registered as dependents.
// Notify them about state changes of the figure.
// Dependents must be of type Observer.
roletype Subject {

collection<ref<Observer>> dependents;
boolean hasObserver(ref<Observer> observer);
void addObserver(ref<Observer> observer);
void removeObserver(ref<Observer> observer);

}

Specification 3-3: Example specification of Figure class.

Please note that a role type in its definition refers to other types, and that these other types need not be
class types. As discussed below, these other types are likely to be other role types from a role model.
Examples are the definition of the Child role type that refers to a Parent role type and the definition of
the Subject role type that refers to an Observer role type.

3.3.3 Class (revised definition)
With the introduction of the role and role type concept, we can now enhance the definition of the class
and inheritance concepts. The object concept has already been enhanced in the previous subsection,
stating that with any object, a set of roles is associated.

36

Definition 3-16: Class (revised)

A class is the definition of a (possibly infinite) set of objects, called its instances. A class de-
fines a non-empty set of role types, a composition function, and a class type. The composition
function, applied to all role types, results in the class type.

The class type specifies the behavior of the instances of the class.

The set of role types of a class is called the class’ role type set. The role type set of a class determines
which kind of roles its instances may play at runtime. An object x of class X may only play a role r if
the role’s type R is an element of the role type set of X.

Specification 3-4 defines the Figure class in terms of role types.
roletype Figure { ... } // For definition, see above.
roletype Child { ... } // For definition, see above.
roletype Subject { ... } // For definition, see above.

// Generically manage properties of figure.
// Examples properties are fill color, frame color, line stroke.
// Properties may be any kind of Object.
roletype Provider {

collection<ref<Object>> properties;
void hasProperty(string name);
void getProperty(string name);
void setProperty(string name, ref<Object> property);
void unsetProperty(string name);

}

class Figure extends Object {
roletype Figure;
roletype Child;
roletype Subject;
roletype Provider;
... More definition.

}

Specification 3-4: Example specification of Figure class, including role types.

The role type set of the Figure class comprises the Figure, Child, Subject, and Provider role types. The
role types are deliberately defined independently of the class. The class only makes use of them by
specifying that they are elements of its role type set. The enclosing definition of a role type is always a
role model (see below).

A class inherits the role type set of its superclass. Thus, with increasing distance from the root class
Object, the size of the role type set increases monotonously. Assume that class Object is defined as
follows:

class Object {
roletype Readable; // Object can be read from a passive form.
roletype Writable; // Object can be written to a passive form.
roletype Instance; // Object provides metainformation.
roletype Clonable; // Object can be cloned.
roletype Comparable; // Object can be compared for equality.
roletype Key; // Object can act as a key for dictionaries.

}

Specification 3-5: Example specification of Figure class.

The cardinality of the object role type set is 6. With Figure being a direct subclass of Object, the car-
dinality of its role type set is 6 plus the number of new role types it defines itself (of which we have
seen 4 so far: Figure, Child, Subject, and Provider).

37

For the purposes of this dissertation, there is no need to introduce a subtyping relationship between
role types. Thus, class inheritance is not affected, and role types of a class remain unchanged by sub-
classes.

3.3.4 Choice of type specification mechanism
A class type is the composition of all the role types from the class’ role type set. The class defines a
composition function that carries out this composition. Effectively, this is the integration of the state
model of the role types to form a larger state model for the class.

This dissertation does not introduce a new type specification, but assumes that any mechanism is ac-
ceptable that fulfills the following properties:

• The mechanism lets developers express a type in an object-oriented fashion.

• The mechanism provides a concept of substitutability based on concept specialization.

• The mechanism lets developers specify dynamic behavior of objects.

• The mechanism lets developers compose (role) types to form new derived (class) types.

These properties are the result of the new class definition. Most of the aforementioned approaches ad-
dress these issues and could be chosen as a type specification mechanism for role modeling (for ex-
ample, [LW93a, LW93b, LW94]).

Another solution is not to choose a particular type specification mechanism, but to rely on a main-
stream modeling language or programming language. (These are typically so weak with respect to
type specification that they are considered here as not having one.) Developers then define the compo-
sition function of the role types implicitly. They realize the composition function through a class im-
plementation.

3.3.5 Object collaboration task and role model (definition)
Object collaborations typically fulfill several tasks in parallel. The same objects collaborate to achieve
several different things. Given any individual object, the role types of the object’s roles express the
behavior needed for the different tasks.

Definition 3-17: Object collaboration task

An object collaboration task is an object collaboration and a set of roles objects play in the
collaboration. The object relationship graph must be non-partitioned.

An object collaboration task represents a single-purpose activity of objects in an object collaboration,
which they carry out by playing the roles defined by the task.

An object collaboration task is said to be valid, if it conforms to a role model.

Definition 3-18: Role model

A role model is a set of role types that relate to each other by object relationship descriptions
and role constraints. The role type relationship graph must be non-partitioned.

The role type relationship graph is the graph of all object relationship descriptions.

38

A role model defines a (possibly infinite) set of valid object collaboration tasks. A collaboration task
from this set is said to conform to the role model. As discussed below, role models compose to be-
come class models, and object collaboration tasks compose to become object collaborations.

Role models are the place where role types are defined. For example, the role model that describes the
figure object hierarchy is called FigureHierarchy. Part of its definition are the role types Child and
Parent, as defined above. Classes have to import these role types from the role model to put them into
their role type set. We use the common dot-notation to identify role types: Child becomes FigureHier-
archy.Child and Parent becomes FigureHierarchy.Parent in the context of a class.

The role type relationship graph in a role model may not be partitioned, so that there is a path from
every role type to every other role type. This ensures that the role model is a cohesive model rather
than a set of unrelated role types.

Before we provide an example, we need to define the concept of role constraint that lets us define how
roles come together in an object (or not).

3.3.6 Role constraint (definition)
An object may play several roles at once, as defined by the role type set of its class. A role, an object
plays, may require another role from that same object within the given object collaboration task. Or, a
role may require that the same object within the collaboration task never plays another role. Or, two
roles might mutually require each other. Finally, two roles may not have any requirements with re-
spect to each other.

Such constraints are expressed as role constraints. (It is role constraint rather than role type constraint,
because this descriptive means refers to roles objects play in an object collaboration task rather than to
role types from a role model).

Definition 3-19: Role constraint

A role constraint is a value from the set {role-implied, role-equivalent, role-prohibited, role-
dontcare}. For every given pair of role types (R, S) from a role model one such value is de-
fined.

Role constraints are scoped by an object collaboration task. They only constrain the role-playing of
objects within such a task. As a consequence, role constraints are only specified within the context of
one role model.

The meaning of the role constraints is as follows:

a) A role-implied value for a pair of role types (R, S) defines that an object playing a role r defined
by role type R is always capable of playing a role s defined by role type S. That is, role r implies
role s. This relationship is transitive.

b) A role-equivalent value for a pair of role types (R, S) defines that an object playing a role r de-
fined by role type R is always capable of playing a role s defined by role type S, and vice versa.
That is, role r and role s imply each other. This relationship is symmetric and transitive.

c) A role-prohibited value for a pair of role types (R, S) defines that an object playing role r defined
by role type R may not play role s defined by role type S within a given collaboration task. That is,
role r prohibits role s for the task. This relationship is symmetric and transitive.

d) A role-dontcare value for a pair of role types (R, S) defines that an object playing a role r of role
type R has no constraints with respect to another role s of role type S within the given collabora-
tion task. The role s may or may not be available together.

39

Figure 3-17 shows the visual representation of role constraints. Each possible role constraint is de-
picted through its own visual symbol.

Parent

NodeSubject

Parent

a)

b)

c)

d)

Child

Node

ParentClient

Figure 3-17: Examples of role constraints between role types.

Case a) shows a role-implied constraint, case b) shows a role-equivalent constraint, case c) shows a
role-prohibited constraint, and case d) shows a role-dontcare constraint.

3.3.7 Figure role models (examples)
As a first example of a role model, consider the collaboration task of a figure object with its client. It
can be described by a simple role model that defines the role types Figure and Client. The Figure role
type depends on further types from a yet unspecified Graphics role model, which it imports.

Specification 3-6 describes the Figure role model:
// Figure requires Graphics role model.
import Graphics.*;

rolemodel Figure {
// Provide basic domain functionality of figures.
// Have origin, extent. Can be drawn, moved, and resized.
roletype Figure {

point origin;
rectangle extent;
void draw(ref<Graphics> context);
void drawOutline(ref<Graphics> context);
void place(point location);
void move(int dx, int dy);
void resize(int handle, int dx, int dy);
... More definition.

}

// The Client role type provides no operations.
// However, it must behave properly when using Figure objects.
roletype Client {

... // Specification of behavior with respect to using figures.
}

constraints {
(*, *) = role-dontcare;

}

... More definition, e.g., associations, cardinalities.
}

Specification 3-6: Example specification of Figure role model.

The wildcard ‘*’ in the role constraints part of the role model is a placeholder for any role type from
the model. Thus, (*, *) expands to { (Figure, Client), (Client, Figure) }.

40

The Client role type is a no-operation role type. Within a role model, such no-operation role types de-
fine roles of objects that are not referenced and used by other objects (hence, no operations needed).
However, a Client object still acts according to the no-operation Client role type.

The Client and Figure role types of the Figure role model are referenced from the outside using the
common dot-notation for qualifying names: Figure.Client and Figure.Figure.

Figure 3-18 shows the Figure role model. Each role type in the role model prominently shows its name
in large font and set below it, in parenthesis and a smaller font, the role model name. The role model
name is added to distinguish role types from different role models in the context of class models (see
below).

Client
(Figure)

Figure
(Figure)

Figure 3-18: The Figure role model.

Another role model example is the collaboration between parent and child figure objects in the hierar-
chy. A parent figure manages its child figures, and a child figure provides access to its parent object.

Specification 3-7 shows the FigureHierarchy role model.
rolemodel FigureHierarchy {

// Provide parent reference.
roletype Child {

ref<Parent> parent;
boolean hasParent();
void setParent(ref<Parent> parent);

}

// Manage child figures.
roletype Parent {

collection<ref<Child>> children;
boolean hasChild(ref<Child> child);
void addChild(ref<Child> child);
void removeChild(ref<Child> child);

}

// Configures parent object with children.
roletype Client {

// Leave it to parent to set itself to child.
// No further specification.

}

// A child may not be its own parent.
// A child may not configure its parent.
constraints {

(Child, *) = role-prohibited;
(*, Child) = role-prohibited;
(Client, Parent) = role-dontcare;
(Parent, Client) = role-dontcare;

}

... More definition, e.g., associations, cardinalities.
}

Specification 3-7: Example specification of FigureHierarchy role model.

Figure 3-19 shows the FigureHierarchy role model.

0..*0..1
Parent

(FigureHierarchy)
Child

(FigureHierarchy)
Client

(FigureHierarchy)

Figure 3-19: The FigureHierarchy role model.

41

Yet another example is the collaboration task for notifying clients about state changes of a figure ob-
ject. Clients may depend on the state of the figure object and need to be informed about changes to it.

A previous subsection defines the role types FigureObserver and Subject. This subsection redefines
them in the context of a role model. In particular, their names are adapted to avoid confusion.

Specification 3-8 defines the FigureObserver role model.
rolemodel FigureObserver {

// Manage all dependent objects.
// Notify them about state changes of the figure.
// Dependents must be of type Observer.
roletype Subject {

collection<ref<Observer>> dependents;
boolean hasObserver(ref<Observer> observer);
void addObserver(ref<Observer> observer);
void removeObserver(ref<Observer> observer);

}

// Provide callback operations for subject.
roletype Observer {

void update(ref<Subject> source, ref<Event> event);
}

... Event definition.

constraints {
(*, *) = role-prohibited;

}

... More definition, e.g., associations, cardinalities.
}

Specification 3-8: Example specification of FigureObserver role model.

Figure 3-20 shows the FigureObserver role model.

0..*
Observer

(FigureObserver)
Subject

(FigureObserver)

Figure 3-20: The FigureObserver role model.

As a final example, consider a role model used to pass client requests along a chain of objects. The
client requests are converted into Request objects first, which are then forwarded from one element in
the chain to its succeeding element. A figure object uses this mechanism to notify its parent about a
client request that it could not handle.

Specification 3-9 describes the FigureChain role model:
rolemodel FigureChain {

// Predecessor in a chain of figure objects.
// Provides operation to generically handle requests.
roletype Predecessor {

ref<Successor> successor;
void setSuccessor(ref<Successor> successor);
void forwardRequest(ref<Request> request);

}

// Accept, queue, and dispatch requests.
roletype Successor {

void handleRequest(ref<Request> request);
void handleDeleteRequest(ref<DeleteRequest> request);
void handleInvalidateRequest(ref<InvalidateRequest> request);

}

... Request definition.

42

constraints {
(*, *) = role-prohibited;

}

... More definition, e.g., associations, cardinalities.
}

Specification 3-9: Example specification of FigureChain role model.

Figure 3-21 shows the FigureChain role model.

Predecessor
(FigureChain)

Successor
(FigureChain)

0..1 0..1

Figure 3-21: The FigureChain role model.

Please note that these role models are concrete design artifacts, and not design patterns. (They are in-
stances of design patterns.) It is a conscious modeling decision to make the FigureHierarchy role
model have a Client role type, but to omit this role type from the FigureChain role models. These role
models are defined for and used in the Figure class model defined below, where the FigureHierachy
role model is used to configure the object hierarchy at runtime. From the object hierarchy, the object
chain is determined, and no option for chain configuration is given.

The role models Figure, FigureHierarchy, FigureObserver, and FigureChain all generically relate to
figure objects. They are therefore used by the abstract Figure and CompositeFigure classes. In addi-
tion, role models specific to a certain figure class can be defined.

For each concrete figure class like RectangleFigure or UmlClassFigure, there is a role model that de-
scribes the figure specific collaboration with its clients. Also, there is typically a role model that de-
fines how to create a new instance. This leads to role models RectangleFigure and RectangleFigureC-
reation, UmlClassFigure and UmlClassFigureCreation, etc. They are omitted here, because they are
fairly simple, and do not add to the discussion.

3.3.8 Composing role models
It might seem natural to introduce a composition function for role models. Composed role models
would be the composition of smaller role models, which could either be atomic or other composed role
models. OOram, for example, is based on a role modeling composition scheme called role model
synthesis [Ree96]. However, OOram, as originally defined, has no concept of class on the modeling
level.

Role modeling as defined in this dissertation directly takes the step from atomic role models to classes
and class models. I have found no need for intermediate composed role models. None of the case
studies presented in Chapters 6 to 8 require the introduction of composed role models. Therefore, no
such role model composition function is introduced.

Composition is always carried out in the context of a class model, where role types are assigned to
classes, and where the classes provide the composition function to compose role types.

3.3.9 Class model (revised definition)
This subsection revises the definition of class model given earlier. Class models are understood as
compositions of role models, in which classes provide and compose role types defined by the role
models.

43

Definition 3-20: Class model

A class model is a set of classes and a set of role models. The classes relate to each other by
inheritance and object relationship descriptions between role types. The class relationship
graph must be non-partitioned.

The purpose of a class model does not change: it serves to model a set of valid object collaborations.
The revised definition simply adds the concept of role model to describe how the classes relate to each
other. In addition to using classes, inheritance, and object relationship descriptions, a class model uses
role models for the description of the set of valid object collaborations.

Effectively, a class model composes the role models. Developers assign role types to classes and de-
fine how the role types are composed to form the class type.

Between the classes, the relationships, and the role models, a set of constraints applies:

• At least one role type from one of the role models must be in the role type set of a class. Other-
wise, the class or the role model would not be connected with the rest of the class model.

• The role type set of a class must fulfill the role constraints set up by the role models. This re-
quirement avoids invalid object collaborations (see section on assigning role types to classes).

• The object relationship descriptions between role types must match those between classes. In par-
ticular, the cardinality of the descriptions between role types must sum up to those of the classes
(see below).

• The relationship graph between the classes may not be partitioned, so that there is a path from
every class to every other class in the model. Otherwise, a class would not be connected with the
rest of the model.

Each role model describes one particular object collaboration task of the valid object collaborations
defined by the class model. The role model composition leads to the class model, which in turn does
not only define one or several object collaboration tasks, but the full set of possible object collabora-
tions.

3.3.9.1 Context and scope of definitions

We can now review how the concepts introduced so far relate to each other.

Everything is defined in the context of a class model. It is the outermost concept. In the context of a
class model we define role models and classes. Role types are defined in the context of role models.
Classes only import the role types; they do not define them.

Role types are defined independently of classes, because their primary purpose is to show how an ob-
ject behaves within a specific collaboration task. Thus, they are always a part of a role model that de-
scribes the (set of valid) object collaboration tasks.

Defining role types and role models independently of a specific class lets us introduce reusable role
models that can be used by different class models. An example is the ObjectProperty role model that
defines the role types Client, Provider, and Property, and that can be used by different class models
(see revised class model example).

3.3.9.2 Cardinality of object relationship descriptions

The cardinality of object relationship descriptions (associations and aggregations) between role types
must sum up to the overall cardinality of object relationship descriptions between the classes of the
role types.

44

Given a pair of classes A and B, let RA be a role type of A and RB a role type of B. For any object re-
lationship description (RA, RB) that is defined by a role model, a cardinality is defined for RA and RB.
Then the following must hold:

• The sum of the cardinality associated with all RA’s from the set of relationship descriptions (RA,
RB) represents the cardinality of the object relationship description of class A with respect to class
B.

• The sum of the cardinality associated with all RB’s from the set of relationship descriptions (RA,
RB) represents the cardinality of the object relationship description of class B with respect to class
A.

Most class models in this dissertation omit the object relationship descriptions between classes, be-
cause they can be derived from the object relationship descriptions between role types. Should there
be a case where this statement does not seem to hold, a role model is probably missing. (Such a role
model may be the simple role model of a Manager object being its own Client and managing a set of
Elements in a collection.)

3.3.9.3 Assigning role types to classes

A class provides a set of role types to determine the possible roles its instances may play. How do role
constraints between role types affect how a class may put role types into its role type set?

The use of the abstract superclass rule (a concrete class may not have subclasses) significantly eases
the definition of these assignment constraints:

• A role-dontcare constraint has no effect on how a class may provide certain role types or not.

• A role-prohibited constraint also has no effect on how a class may provide some role types, be-
cause role constraints are restricted to single object collaboration tasks only. For different tasks, an
object may well play roles defined by role types between which a role-prohibit constraint exists.

For example, the role-prohibited constraint between the Observer and Subject role type of the Fig-
ureObserver role model denotes that an object may not observe itself. However, an object may
well observe another object and be observed by yet another object. Hence a class may provide
both role types. This second case uses two different collaboration tasks, even though they are in-
stances of the same role model.

• A role-implied constraint between two role types (R, S) puts a constraint on the class hierarchy of
a class X that provides role type R. Another class Y now provides role type S. The role constraint
is maintained if one of the following cases holds:

− X = Y;

− Y is a superclass of X;

− Every concrete subclass of X provides S (either directly or indirectly).

These three cases ensure that for a given object that plays a role defined by R, a role defined by S
is available.

• A role-equivalent constraint between two role types (R, S) puts a constraint on the class hierarchy
of a class X that provides role type R. Assume another class Y, which provides role type S. The
role constraint is maintained if one of the following cases hold:

− X = Y;

− if Y is a superclass of X, and if every concrete subclass of Y provides R (directly or indi-
rectly);

45

− if X is a superclass of Y, and if every concrete subclass of X provides S (directly or indi-
rectly).

These three cases ensure that for a given object that plays a role defined by R, a role defined by S
is available, and that for a given object that plays a role defined by S, a role defined by R is avail-
able.

As a general rule, no constraint can prevent that a class provides a certain role type. However, role-
implied and role-equivalent enforce the joint provision of role types according to the above specifica-
tion.

3.3.10 Figure class model (revised example)
We can now describe the Figure class hierarchy as a class model based on role models. So far, we
have described the class model without role models (Figure 3-13). We also have defined the role mod-
els Figure, FigureHierarchy, FigureObserver, and FigureChain.

We further need the ObjectProperty role model, which determines the collaboration of a client with a
figure and its property objects. It defines the role types Client, Property, and Provider (of property).
Specification 3-10 illustrates the ObjectProperty role model.

rolemodel ObjectProperty {
// Anything may work as a property.
// Thus, this is a no-semantics role type serving as a handle.
// It can be assigned to any class, even after the class has been defined.
roletype Property {}

// Generically manage properties of figure.
// Examples properties are fill color, frame color, line stroke.
// Properties may be any kind of Object.
roletype Provider {

collection<ref<Property>> properties;
void hasProperty(string name);
void getProperty(string name);
void setProperty(string name, ref<Property> property);
void unsetProperty(string name);

}

// Get and set Properties to Provider.
roletype Client {

// Do not set Provider as a Property to itself.
// No further specification.

}

// A Provider may not be have itself as a Property.
// A Client may not be a Property.
constraints {

(Property, *) = role-prohibited;
(*, Property) = role-prohibited;
(Client, Provider) = role-dontcare;
(Provider, Client) = role-dontcare;

}

... More definition, e.g., associations, cardinalities.
}

Specification 3-10: Example specification of Figure class model.

Also, we have not defined the class-specific role models RectangleFigure, PolygonFigure, etc. These
are simple binary role models, which define a Client and a Figure role type. The Figure role type de-
fines basic services for the Client role type. The specification given below omits the details.

Specification 3-11 describes the Figure class model.

46

// Figure requires ObjectProperty and Graphics role model.
import Object.ObjectProperty;
import Graphics.Graphics;

classmodel Figure {
rolemodel Figure { ... }
rolemodel FigureHierarchy { ... }
rolemodel FigureObserver { ... }
rolemodel FigureChain { ... }

class Figure extends Object {
roletype Figure.Figure;
roletype FigureHierarchy.Child;
roletype FigureObserver.Subject;
roletype FigureChain.Predecessor;
roletype ObjectProperty.Provider;
roletype Graphics.Client;
... More definition.

}

class CompositeFigure extends Figure {
roletype FigureHierarchy.Parent;
roletype FigureChain.Successor;
... More definition.

}

rolemodel RectangleFigure { ... }
rolemodel RectangleFigureCreation { ... }

class RectangleFigure extends Figure {
roletype RectangleFigure.Figure;
roletype RectangleFigureCreation.Creator;
roletype RectangleFigureCreation.Product;
... More definition.

}

rolemodel PolygonFigure { ... }
rolemodel PolygonFigureCreation { ... }
class PolygonFigure extends Figure { ... }

rolemodel TextFigure { ... }
rolemodel TextFigureCreation { ... }
class TextFigure extends Figure { ... }

rolemodel GroupFigure { ... }
rolemodel GroupFigureCreation { ... }
class GroupFigure extends CompositeFigure { ... }

rolemodel UmlClassFigure { ... }
rolemodel UmlClassFigureCreation { ... }
class UmlClassFigure extends CompositeFigure { ... }

rolemodel UmlAssociationFigure { ... }
rolemodel UmlAssociationFigureCreation { ... }
class UmlAssociationFigure extends CompositeFigure { ... }

... More definition, e.g., associations, cardinalities.
}

Specification 3-11: Example specification of Figure class model.

Figure 3-22 shows the class model using role models. The figure shows class-level role types for the
first time. Class-level role types are role types of the class object (see discussion below). They look
like regular (instance-level) role types, but are shown with a rectangle rather than an oval as the
bounding box.

A role type, which is put on top of a class, is an element of that class’ role type set. The object rela-
tionship descriptions between classes are omitted to avoid cluttering up the figure. They can be de-
rived from the relationship descriptions between the role types.

47

UmlClassFigure

RectangleFigure

GroupFigure

TextFigure

Object

Figure

CompositeFigure

Figure
(RectangleFigure)

Figure
(TextFigure)

Product
(TFigCreation)

Product
(UCFigCreation)

Figure
(UmlClassFigure)

0..*

0..1

0..1

Figure
(Figure)

Predecessor
(FigureChain)

Child
(FigureHierarchy)

Successor
(FigureChain)

Observer
(FigureObserver)

Parent
(FigureHierarchy)

Subject
(FigureObserver)

Observer
(FigureObserver)

0..*

0..1

Client
(FigureHierarchy)

Provider
(ObjectProperty)

0..*

Property
(ObjectProperty)

Client
(ObjectProperty)

Client
(Figure)

Client
(RectangleFigure)

Client
(TextFigure)

Client
(TFigCreation)

Client
(RFigCreation)

Client
(UmlClassFigure)

Creator
(TFigCreation)

Creator
(UCFigCreation)

Product
(RFigCreation)

Creator
(RFigCreation)

Product
(GFigCreation)

Figure
(GroupFigure)

Client
(GroupFigure)

Creator
(GFigCreation)

Client
(UCFigCreation)

Client
(GFigCreation)

Figure 3-22: Class model of the example Figure class model, including all role models.

Figure 3-22 demonstrates a few interesting issues.

• We can see how a class assembles a set of role types and composes them. For example, the Figure
class provides the Figure, Subject, Child, Provider, and Predecessor role types.

• Also, no object relationship descriptions between classes are needed, because they can be derived
easily from the relationship description between role types.

48

• All important role models deal with the key classes Figure and CompositeFigure. The less impor-
tant subclasses only provide simple binary domain-specific role models like RectangleFigure.

• The average subclass introduces two role models. One that provides its primary domain function-
ality (like RectangleFigure), and one that lets clients create instances of the class (like Rectangle-
FigureCreation).

The Figure class model raises some issues that need more discussion.

3.3.10.1 Roles of class objects

Class objects are objects and therefore play roles. The class of a class is called its metaclass. The role
types of a metaclass need a dedicated textual and visual notation to not screw up specifications and
diagrams.

Textually, we tag the metaclass’ role type using the keyword static, and put them next the role types of
the class. Visually, in a class model, we draw the bounding box of a static role type as a rectangle,
rather than as an oval. This distinction lets us put static role types right next to regular role types.

Consider the GroupFigureCreation role model for creating a GroupFigure object. A Client object calls
the new operation on a Creator, the class object. The Creator creates the new Product object that it re-
turns to the Client. The Creator and Product role types are made up by the different constructor and
initialization operations.

Specification 3-12 shows the textual specification of the GroupFigureCreation role model.
rolemodel GroupFigureCreation {

roletype Client {
// No constraints.

}

roletype Creator {
GroupFigure new();
GroupFigure new(collection<ref<Figure>> elements);
... Possibly more.

}

roletype Product {
initialize(collection<ref<Figure>> elements);

}

... More definition, e.g., associations, cardinalities.
}

class GroupFigure extends CompositeFigure {
static roletype GroupFigureCreation.Creator;
roletype GroupFigureCreation.Product;
... More role types.

}

Specification 3-12: GroupFigure class and GroupFigureCreation role model.

Figure 3-23 shows the GroupFigureCreation role model visually.

GroupFigure

Product
(GFigCreation)

Creator
(GFigCreation)

Client
(GFigCreation)

Figure 3-23: GroupFigure class with GroupFigureCreation role model.

49

Depending on the programming language used to implement this role model, different language fea-
tures can be deployed to make it more convenient to use. For example, in Java, unless there are more
specific requirements, Creator.new() should be mapped on new GroupFigure(), which may then inter-
nally call initialize() with an empty collection.

3.3.10.2 Boundaries of class model

The class model of Figure 3-22 presents only a part of what would be a realistic class model for a
drawing editor. Basic graphical figure classes, like CircleFigure or TriangleFigure are missing. Also,
domain-specific graphical figure classes are missing, like UmlInterfaceFigure, UmlInheritanceFigure,
or UmlCollaborationFigure, as in the case of the UML drawing editor example.

If we added these classes, the class model would grow until it encompassed the whole system. The
result would be a single large class model, which would be very inconvenient to use. Therefore, con-
cepts to partition such a class model are needed. Categories, subsystems, and frameworks are exam-
ples of such concepts. As this work focuses on frameworks only, we omit the other concepts.

The next chapter shows how the class model can be partitioned into one framework and two frame-
work extensions. The framework comprises the Figure, CompositeFigure, and GroupFigure classes.
The first framework extension part encompasses the fundamental figure classes, and the second
framework extension encompasses the application-specific figure classes.

3.3.11 Design patterns in role modeling
This dissertation is not about design patterns. However, design patterns permeate framework design.
The Figure class model example shows several design pattern instances. The case studies in Chapter 6
to 8 show even more design pattern applications in the context of object-oriented frameworks. There-
fore, it is helpful to show how design patterns relate to role models. Knowing patterns in their role
model form lets us communicate design examples much faster than is possible without patterns.

3.3.11.1 Design patterns and design templates

A pattern is the abstraction from a concrete form which keeps recurring in specific non-arbitrary con-
texts [RZ96]. An object-oriented design pattern is a pattern in the domain of object-oriented design. A
pattern is frequently described as a problem/context/solution triple [GHJV95, BMR+96]. According to
[GHJV95, p. 407], “design patterns identify, name, and abstract common themes in object-oriented
design. They preserve design information by capturing the intent behind a design. They identify
classes, instances, their roles, collaborations, and the distribution of responsibilities.”

Despite much recent work on design patterns, many misunderstandings about patterns remain [Vli98].
Perhaps the most common and most harmful misunderstanding is to take the structure diagram of a
design pattern description, for example from [GHJV95], as a rigid definition of the pattern. The
structure diagram and the description of its participants are an illustration of one common form of the
pattern. By no means does the structure diagram represent the one and only form of the pattern.

It is helpful to distinguish between the concept of design pattern and design template. A design pattern
is an abstract idea that defies formalization and therefore precise definition. However, for any given
pattern, we can define an infinite number of design templates that can be represented in a formal way.
The specification of such a design template can be carried out using any appropriate formalism, mak-
ing code generation and conformance checking of implementations possible.

A pattern is an abstract idea that can be illustrated in many different ways and that can be instantiated
in an infinite number of ways. We can illustrate a design pattern using role models as much as we can

50

illustrate it using the class diagrams in [GHJV95]. We can also use both. The choice of a particular
modeling technique depends on how well the presentation conveys the pattern idea to its readers.

In [Rie96a] I discuss the advantages of role modeling over traditional class-based modeling for illus-
trating design patterns. Almost all design patterns, in particular those from [GHJV95] can be illus-
trated using role models. The role model form of a pattern lets developers more easily understand the
pattern structure and apply it in a new design than possible with traditional class-based modeling.

3.3.11.2 The Composite pattern as a role model (example)

The extended role modeling technique lets us illustrate design patterns in a more comprehensive way
than traditional class-based modeling lets us do.

Consider the Composite design pattern [GHJV95]. The Figure class model uses an instance of this
pattern in the form of the FigureHierarchy role model.

Figure 3-24 shows an illustration of the Composite pattern in role model form. It has two parts. The
core part is the Client/Child/Parent role model that constitutes the Composite pattern. The second part
is a separate NodeClient/Node role model that represents a domain functionality role model. This sec-
ond role model is grayed out in the figure, because it does not directly belong to the pattern.

Parent Child
0..* 0..1

NodeNodeClient

Client

Figure 3-24: Illustration of the Composite pattern using role models.

The NodeClient/Node role model represents the domain functionality of the domain the pattern is ap-
plied in. The Client/Child/Parent role model represents the core idea of the pattern, namely that a Par-
ent object can have several distinct Child objects and that the Parent object gets configured with its
Child objects by a Client. The role-implied look-alike symbols transfer their role modeling meaning to
the pattern level. It should be noted, however, that no precise semantics are underlying this pattern
illustration. Here, the role-implied constraints state that any Child object and any Parent object always
must be able to play the Node role.

Figure 3-25 shows the most common class model of the Composite pattern. It also shows how the role
models are applied to this class model, thereby clarifying the different responsibilities of the classes.

Component

Composite

0..*

0..1

Parent

ChildClient

NodeNodeClient

Figure 3-25: Illustration of the most common class model of the Composite pattern.

51

To drive home the point that role models, in conjunction with class models, illustrate design patterns
more comprehensively than traditional class-based modeling, Figure 3-26 shows another class model
that illustrates the Composite pattern equally well.

Component

0..*

0..1
Child

Parent

Client

NodeNodeClient

Figure 3-26: Illustration of an alternative class model for the Composite pattern.

Both class models can be formalized as design templates. They represent the pattern idea in a specific
form. The first case, shown in Figure 3-25, covers the majority of the pattern applications, but the sec-
ond case, shown in Figure 3-26, can also be found.

3.3.11.3 Further design patterns

In addition to the Composite pattern, the Figure example uses the Observer, Chain of Responsibility,
and Property List pattern. They occur as the FigureObserver, FigureChain, and ObjectProperty role
models.

Appendix D presents these and many other patterns in role model form. The case studies of Chapter 6
to 8 draw heavily on these patterns to describe framework designs.

3.3.12 Visual role model shorthands
The textual and visual presentation of class models can become complex, in particular if many role
models are involved. However, conciseness of presentation is important, because it helps communi-
cate the design structure more effectively than possible by a lengthy presentation (which is also
needed).

Sometimes the same types of role models are composed in a class in always the same way. It is very
inconvenient to elaborately specify and draw these compositions in all their detail. Common recurring
compositions should be captured using a shorthand notation.

Consider a Drawing class. In a drawing editor application, there might be exactly one instance of the
Drawing class, which represents the whole drawing. Assume that there is one central place where to
get this object, and that this is the class object of the Drawing class. Therefore, the Drawing class of-
fers a simple access operation to it (DrawingSingleton role model). Moreover, the Drawing object is
instantiated only when the first access occurs. Thus, the Drawing class object plays the Client and
Creator roles in a DrawingCreation role model.

Figure 3-27 shows the resulting visual specification.

Drawing

Product
(DrawingCreation)

Creator
(DrawingCreation)

Provider
(DrawingSingleton)

Client
(DrawingCreation)

Client
(DrawingSingleton)

Singleton
(DrawingSingleton)

Figure 3-27: Drawing class with DrawingSingleton and DrawingCreation role models.

52

Because this kind of role model composition is such a common case that we abbreviate it using a
shorthand. Figure 3-28 shows how the shorthand symbol looks like.

Drawing

Provider
(DrawingSingleton)

singleton
access

Client
(DrawingSingleton)

Singleton
(DrawingSingleton)

Figure 3-28: Drawing class with collapsed DrawingSingleton and DrawingCreation role model.

Unless a precise role type specification is required, it is sufficient for all practical purposes to use the
terminology set up in Figure 3-28 to discuss this design. The case studies of this dissertation make use
of this shorthand to save time and space and to avoid unnecessarily lengthy discussions.

Appendix C, the notation guide, presents further shorthands.

3.4 Summary
This chapter describes fundamental object and role modeling concepts needed for framework design.
These concepts form the building blocks of all further concepts to come in this dissertation. They are
needed to define higher-level concepts for framework design.

First, the chapter presents a concise summary of traditional class-based modeling concepts. It then en-
hances these concepts with new and adapted role modeling concepts. The new role modeling concepts
add to the existing concepts and do not replace them.

The overall method becomes an evolutionary extension of existing object modeling approaches. They
add to them where necessary rather than trying to replace them. Existing designs and documentations
are not invalidated. However, using role modeling, they can be defined much more precisely and with
greater detail.

The next chapter on framework design builds on this foundation to better describe object-oriented
frameworks.

4
Framework Design

An object-oriented framework is a model of a particular domain or an important aspect thereof. It pro-
vides a reusable design and reusable implementations to clients. This chapter describes framework
design and use from a role modeling perspective. A framework is described as a class model, whose
free role types determine how it is to be used by use-relationship-based clients. A set of extension-
point classes determines how the framework can be extended by inheritance. The chapter uses these
definitions and results to discuss framework layering and framework documentation from a role mod-
eling point of view.

4.1 Chapter overview
Chapter 2 puts framework into the wider perspective of software architecture. According to that per-
spective, object-oriented frameworks are design artifacts on a level above classes and role types. We
therefore need explicit modeling concepts to represent them.

This chapter builds on the role modeling foundations laid in the previous chapter. It defines frame-
works as class models that are used by its environment in specific ways. The environment of a frame-
work comprises its use-relationship-based (black-box) clients, its inheritance-based (white-box) exten-
sion clients, and classes the framework builds upon for its own design and implementation.

The chapter is divided into five major parts.

• Framework design. This part introduces the concept of framework, its constituting parts, and their
definitions. It provides the basis for the following subsections.

54

• Black-box framework use. This part discusses the use of frameworks from a black-box use-
relationship-based perspective. It shows how role models serve as bridges between use-clients and
a framework.

• White-box framework extension. This part shows how frameworks are customized for specific ap-
plication domains using inheritance as extension mechanism.

• Framework layering. This part applies the role modeling concepts for framework design to the
layering of class models, be they frameworks or application-specific framework extensions.

• Framework documentation. This final part draws some conclusions on how to document complex
frameworks using role modeling.

The results of this chapter let us model object-oriented software systems with frameworks as elemen-
tary building blocks that provide well-defined interfaces to their environment.

4.2 Framework design
Frameworks are cohesive design and implementation artifacts. This section defines what a framework
is and lists the hooks by which it is embedded into its environment. The environment comprises use-
relationship-based (black-box) clients, inheritance-based (white-box) extension clients, and further
classes the framework builds upon. Sections 4.3 and 4.4 discuss each aspect of a framework’s envi-
ronment in more detail.

4.2.1 Framework (definition)
A framework is a model of a particular domain or an important aspect thereof. A framework may
model any domain, be it a technical domain like distribution or garbage collection, or an application
domain like banking or insurance. A framework provides a reusable design and reusable implementa-
tions to clients.

Definition 4-1: Framework

A framework is a class model, together with a free role type set, a built-on class set, and an
extension-point class set.

The core of a framework is a class model, as defined in Chapter 3. It is defined in terms of classes and
role models. A role model may either be newly defined by the framework, or be imported from an-
other framework, or be imported from a class library.

• The free role type set of a framework comprises those free role types of the class model that stem
from role models that are defined by the framework. The free role type set excludes free role types
from role models that are imported by the framework (see definition and discussion below).

• The built-on class set of a framework comprises those classes from other class models, frame-
works, or framework extensions, which framework classes build upon (see definition and discus-
sion of built-on classes below). They use free role types and free role models to do so.

• The extension-point class set of a framework comprises those framework classes, from which new
classes of a framework extension may inherit (see definition of extension-point class set below).

55

Whether a role type is a free role type or not, and whether a class is an extension-point class or not,
cannot be derived from some intrinsic properties of the role types or classes, nor can it be derived from
the domain being modeled. It always is a conscious modeling decision.

A framework defines how objects collaborate with each other to represent the domain being modeled.
A framework captures those aspects of a domain that are considered invariant over a set of object col-
laborations that represent concrete domain situations. A framework, as any other model, always fo-
cuses on specific aspects of the domain and ignores those deemed irrelevant for the modeling task.

The three key concepts of free role type, built-on class, and extension-point class serve to define how a
framework connects to its environment.

Use-client classes are framework-external classes that use free role types to define how their instances
make use of framework objects. Built-on classes are framework-external classes that are utilized by
the framework for implementing its services. Extension-point classes serve to define how framework
extensions custom-tailor the general domain model of the framework to an application-specific model.

As a consequence, a framework has two types of clients and may be a client of further frameworks
itself:

• Use-client class. A use-client class is a framework-external class whose instances make use of
framework objects via use-relationships.

• Extension class. An extension class is a subclass of an extension-point class of the framework. It
makes use of a framework class via inheritance.

Each framework class may itself be a use-client class of a lower-layer framework class, for example a
built-on class. Also, a framework class may inherit from an extension-point class of another frame-
work and thereby become an extension class of the other framework. (In single rooted systems, this is
always the case, with the Object framework being the only exception.)

Frameworks have been characterized as being either black-box or white-box [JF88]. A black-box
framework is a framework that is used by means of object composition, and a white-box framework is
a framework that is extended using inheritance. Most real-world frameworks are “gray-box” frame-
works, allowing both uses of a framework.

4.2.2 Free role type (definition)
The free role types of a framework define how use-clients may make use of a framework. The set of
free role types of a framework defines the full set of services that clients may access.

Definition 4-2: Use-client object

A use-client object of a framework is a framework-external object that makes use of one or
more framework objects in an object collaboration task.

A framework-external object is an object that is an instance of a class that is not defined by the
framework. (It may be an instance of a class from another framework, though.)

Definition 4-3: Use-client class

A use-client class of a framework is the class of a use-client object. It is connected to the
framework through one or more role models.

56

Making use of a framework is defined in terms of the role models that connect client classes with
framework classes. Client classes take on free role types of the framework’s free role models.

Definition 4-4: Free role type

A free role type of a framework is a role type of a framework-defined role model that may be
picked up by use-client classes by putting it into their role type sets.

A free role type can be represented as an interface or a protocol, given a programming language that
offers these concepts. However, free role types, which are no-operation or even no-semantics role
types, usually are not explicitly represented on the implementation level.

Definition 4-5: Free role model

A free role model of a framework is a framework-defined role model that has one or more free
role types.

Definition 4-6: Free role type set

The free role type set of a framework is the set of all free role types of a framework.

Using a framework this way is called black-box use, because clients connect to the framework using
object relationships only. A use-client class determines the roles its instances may play through the
free role types it takes on. The section on black-box use of frameworks discusses free role types and
their use further.

4.2.3 Built-on class (definition)
Built-on classes are classes the framework relies on to implement its services. The framework reuses
these framework-external classes, which may stem from any kind of class model, that is class libraries,
frameworks, or application-specific framework extensions.

Definition 4-7: Built-on object

A built-on object of a framework is a framework-external object that a framework object
makes use of in an object collaboration task.

Definition 4-8: Built-on class

A built-on class of a framework is the class of a built-on object. It is connected to the frame-
work through one or more role models.

Definition 4-9: Built-on class set

The built-on class set of a framework is the set of all built-on classes of the framework.

The framework class is said to build upon the framework-external (built-on) class.

How do framework classes make use of built-on classes? The built-on class is part of a (built-on) class
model that defines the role model through which another class may use the built-on class. Such a role

57

model is always a free role model of the class model being built upon, and the role type the framework
class takes on is always a free role type of this role model.

A built-on class set is better suited for describing a framework’s dependencies than a “built-on role
model set,” because it helps prevent unexpected behavior of instances of built-on classes. By relying
on a specific class rather than a role type, a framework class is given a full behavioral specification of
a built-on class rather than just one partial aspect as described by a single role type.

4.2.4 Extension-point class (definition)
A white-box framework serves as scaffolding for framework extensions. A framework extension is a
set of classes, some of which inherit from framework classes. The framework models the domain on
an abstract level, and a framework extension customizes this general domain model for a particular
application. Framework extensions are discussed in a later section. Here, extension-point classes are
defined, which are the (hook) classes that a framework extension relies upon.

Definition 4-10: Extension-point class

An extension-point class is a framework class that may be subclassed by framework-external
classes.

Definition 4-11: Extension-point class set

The extension-point class set of a framework is the set of all extension-point classes of the
framework.

The definition of extension-point classes is crucial for reusing classes through inheritance. Experience
shows that only those classes, which have been prepared for reuse, can actually be reused in an effec-
tive way. A developer of a class must take into account how a new subclass inherits from the class
when designing it. Only those classes that have been prepared for being reused should be declared ex-
tension-point classes of a framework.

The subsection on framework extension (see below) defines what framework extensions are and how
they are handled in the context of framework design and layering.

4.2.5 Figure and Graphics framework (examples)
This section presents the Figure and the Graphics frameworks, as taken from Chapter 3.

4.2.5.1 Figure framework

The framework’s core consists of the classes Figure, CompositeFigure, and GroupFigure. These
classes are independent of any particular drawing editor application, and therefore serve well as part of
a framework.

Specification 4-1 describes the framework.
// Figure imports the Common.ObjectProperty
// and Graphics.Graphics role model.
import Common.ObjectProperty;
import Graphics.Graphics;

framework Figure {
public rolemodel Figure { ... }
public rolemodel FigureHierarchy { ... }

58

public rolemodel FigureObserver { ... }
protected rolemodel FigureChain { ... }

public abstract class Figure extends Object {
roletype Figure.Figure;
roletype FigureHierarchy.Child;
roletype FigureObserver.Subject;
roletype FigureChain.Predecessor;
roletype ObjectProperty.Provider;
roletype Graphics.Client;
... More definition.

}

public abstract class CompositeFigure extends Figure {
roletype FigureHierarchy.Parent;
roletype FigureChain.Successor;
... More definition.

}

rolemodel GroupFigure { ... }
rolemodel GroupFigureCreation { ... }

public class GroupFigure extends CompositeFigure {
roletype GroupFigure.Figure;
roletype GroupFigureCreation.Creator;
roletype GroupFigureCreation.Product;
... More definition.

}

// Free role type set of framework.
freeroletypes {

Figure.Client;
FigureHierarchy.Client;
FigureObserver.Observer;
ObjectProperty.Client;
GroupFigure.Client;
GroupFigureCreation.Client;

}

// Extension-point class set of framework.
extensionpoints {

Figure;
CompositeFigure;

}

// Built-on class set of framework.
builtonclasses {

Graphics.Graphics;
}

}

Specification 4-1: Specification of the Figure framework.

Figure 4-1 shows the visual representation of the framework. A light-gray background identifies free
role types, while regular non-free role types have a white background.

The specification and its visual representation show all three parts of the framework.

• Class model. The class model of the framework comprises the classes Figure, CompositeFigure,
and GroupFigure. It also defines several role models like Figure, FigureHierarchy, and FigureOb-
server. In addition, the Figure framework imports the Common.ObjectProperty and Graph-
ics.Graphics role model.

• Free role type set. The free role type set of the framework comprises the role types Figure.Client,
FigureHierarchy.Client, FigureObserver.Observer, ObjectProperty.Client, GroupFigure.Client,
and GroupFigureCreation.Client. The free role types define how the framework is to be used, as
illustrated below.

59

• Extension-point class set. The extension-point class set of the framework comprises the classes
Figure and CompositeFigure. Extension classes of a framework may inherit only from extension-
point classes. GroupFigure is not an extension-point class, because it is a concrete class not pre-
pared for subclassing.

• Built-on class set. The built-on class set of the framework contains the Graphics class from the
Graphics framework. The Figure class builds upon it through the Graphics.Client role type.

Figure
framework

Object
framework

Object

Figure

CompositeFigure

Graphics

Provider
(ObjectProperty)

0..*

0..*

0..* 0..1

0..1

Figure
(Figure)

Predecessor
(FigureChain)

Child
(FigureHierarchy)

Successor
(FigureChain)

Observer
(FigureObserver)

Parent
(FigureHierarchy)

Subject
(FigureObserver)

Observer
(FigureObserver)

Graphics
(Graphics)

Client
(Graphics)

0..1

Property
(ObjectProperty)

Client
(ObjectProperty)

Client
(Graphics)

Client
(Figure)

Client
(GroupFigure)

Client
(GFigCreation)

Client
(FigureHierarchy)

Group

Figure
(GroupFigure)

Product
(GFigCreation)

Creator
(GFigCreation)

object
creation

Figure 4-1: Class model of the Figure framework.

60

From the Graphics framework point of view, Figure is a use-client class. Figure uses the Graphics
framework by putting one of its free role types, the Graphics.Client role type, into its role type set.
Thus, frameworks can recursively build on each other.

4.2.5.2 Graphics framework

As a second framework example, consider the Graphics framework. It provides the Graphics, Image,
Font, and Polygon class. The Graphics class lets clients draw figures and text onto a graphics context.
A graphics context may be anything from a drawing area on the screen up to a printing device. The
Image, Font, and Polygon classes are used to represent images, fonts, and polygons.

Each of the different tasks involved is described as a role model. Specification 4-2 shows the resulting
definition of the Graphics framework.

framework Graphics {
public rolemodel Graphics { ... }
public rolemodel Clipping { ... }
public rolemodel Imaging { ... }
public rolemodel Texting { ... }
public rolemodel Polylining { ... }

public abstract class Graphics extends Object {
roletype Graphics.Graphics;
roletype Clipping.Graphics;
roletype Imaging.Imager;
roletype Texting.Texter;
roletype Polylining.Polyliner;
... More definition.

}

public rolemodel ImageCreation { ... }

public abstract class Image extends Object {
roletype Imaging.Image;
roletype ImageCreation.Creator;
roletype ImageCreation.Product;
... More definition.

}

public rolemodel FontCreation { ... }

public abstract class Font extends Object {
roletype Texting.Font;
roletype FontCreation.Creator;
roletype FontCreation.Product;
... More definition.

}

public rolemodel PolygonCreation { ... }

public class Polygon extends Object {
roletype Polylining.Polygon;
roletype PolygonCreation.Creator;
roletype PolygonCreation.Product;
... More definition.

}

// Free role type set of framework.
freeroletypes {

Graphics.Client;
Clipping.Client;
Imaging.Client;
Texting.Client;
Polylining.Client;
ImageCreation.Client;
FontCreation.Client;
PolygonCreation.Client;

}

61

// Extension-point class set of framework.
extensionpoints {

Graphics;
}

// Built-on class set of framework.
builtonclasses {

// Empty set (uses native API).
}

}

Specification 4-2: Specification of the Graphics framework.

Figure 4-2 shows the class model of the Graphics framework.

Graphics
framework

Graphics

Image

Font

Polygon

Polyliner
(Polylining)

Texter
(Texting)

Font
(Texting)

Polygon
(Polylining)

Imager
(Imaging)

Image
(Imaging)

Graphics
(Clipping)

Graphics
(Graphics)

Creator
(PolygonCreation)

Creator
(ImageCreation)

object
creation

Creator
(FontCreation)

Client
(Graphics)

Client
(Clipping)

Client
(Polylining)

Client
(Texting)

Client
(Imaging)

Client
(ImageCreation)

Client
(FontCreation)

Client
(PolygonCreation)

Product
(ImageCreation)

object
creation

Product
(FontCreation)

object
creation

Product
(PolygonCreation)

Figure 4-2: Class model of the Graphics framework.

62

The class model of the Graphics framework comprises the classes Graphics, Image, Font, and Poly-
gon. Its free role type set comprises the Client role types of the creation role models and the Client
role types of the domain functionality role models. Its built-on class set is empty, because the classes
are implemented using a native API. The extension-point class set comprises the Graphics class only.

4.3 Framework use
Use-client objects of a framework use framework objects during object collaboration tasks described
by free role models. Free role types from these role models determine the behavior of a use-client ob-
ject. Free role types and free role models are the key (primitive) means to describe how clients may
make use and eventually do make use of a framework.

4.3.1 Direct coupling through free role models
A use-client class makes use of a framework by putting one or more of its free role types into its role
type set. There is no other way of using a framework. By accepting a role type, the class declares that
its implementation and consequently the behavior of its instances conforms to the role type specifica-
tion.

Use-client classes are coupled by static typing with the framework class of their interest, which is why
we call this coupling mechanism direct coupling (as opposed to role object coupling, discussed be-
low).

Effectively, a free role model acts as the bridge between a client and a framework. It represents the
contract to which both the use-client and the framework promise to conform. The use-client-side and
the framework-side role types represent the hooks by which the role model ties in the different classes.

Free role models, used this way, let framework developers specify the behavior required of client
classes. This helps to avoid framework misuse. The strength of this help depends on how expressive
the type specification mechanism is and how strongly conformance of an implementation to a role
type or class specification can be ensured or checked for.

The class-based equivalent to using role types is to define classes that formalize use-client behavior,
and then to make use-client classes inherit from them. This approach has the disadvantage of either
requiring multiple inheritance or having an explosion of the number of classes. It is much better to use
role types, which are precisely those lightweight entities that define one particular aspect of connect-
ing to a framework, and nothing else. It is up to the use-client class to pick up those role types relevant
to it.

This type of coupling can be applied recursively between frameworks. In particular does a framework
build on its built-on classes through the use of free role models. A framework class picks up a free role
type from a free role model through which it wants to connect to a built-on class. From the built-on
class’ point of view, the framework class is a use-client class, and the free role model acts as the
bridge between them.

4.3.2 Examples of direct coupling
This subsection considers two examples of direct coupling:

63

• Coupling of Editor, Figure, and Graphics framework. The Editor use-client class is directly cou-
pled with the Figure framework, which in turn is directly coupled with the Graphics framework.

• Coupling of Editor and KidsEditor extension with Figure and KidsFigures extension. The Kids-
Editor use-client class is directly coupled with the KidsFigures extension of the Figure framework.

4.3.2.1 Editor use-client of Figure framework

For the first example, consider the basic handling of figures through an Editor application class. The
Editor class is a use-client class of the Figure class. Figure 4-3 shows how it ties in with the frame-
work using its free role types. Also, the framework diagram shows how the Figure class ties in with
the Graphics class, using a free role model. The free role models are highlighted in the diagram
through a surrounding red box (dark gray box in a gray-scale printout).

Figure
framework

Object
framework

Figure

CompositeFigure

GraphicsEditor

Object

Provider
(ObjectProperty)

0..*

0..* 0..1

0..1

Figure
(Figure)

Predecessor
(FigureChain)

Child
(FigureHierarchy)

Successor
(FigureChain)

Observer
(FigureObserver)

Parent
(FigureHierarchy)

Subject
(FigureObserver)

Observer
(FigureObserver)

Graphics
(Graphics)

0..1

0..*

Property
(ObjectProperty)

Client
(ObjectProperty)

Client
(Graphics)

Client
(Figure)

Client
(FigureHierarchy)

...
Figure 4-3: Editor example of making use of the Figure framework.

As can be seen, class Editor picks up the Figure.Client and the FigureObserver.Observer role type.
Thus, the Figure role model directly couples the Editor use-client class with the Figure framework.

Also, the Figure class picks up the Graphics.Client role type. Thus, the Graphics role model directly
couples the Figure framework with the Graphics framework.

64

4.3.2.2 KidsEditor use-client of Figure framework

As the second example, consider a drawing editor for children, called KidsEditor. It makes use of the
Figure framework to provide children with basic graphical figures like rectangles and circles, but also
with more complex attention-grabbing figures like “aquarium figures” and “circus figures”. Aquarium
figures show animated fishes, and circus figures show juggling acts.

Figure
framework

Object
framework

KidsFigures
framework extension

Figure

CompositeFigure

GraphicsEditor

Object

AquariumFigureKidsEditor

Provider
(ObjectProperty)

0..*

0..* 0..1

0..1

Figure
(Figure)

Predecessor
(FigureChain)

Child
(FigureHierarchy)

Successor
(FigureChain)

Observer
(FigureObserver)

Parent
(FigureHierarchy)

Subject
(FigureObserver)

Observer
(FigureObserver)

Graphics
(Graphics)

0..1

0..*

Property
(ObjectProperty)

Product
(AquaFigCreation)

Client
(ObjectProperty

Client
(Graphics)

Client
(Figure)

Client
(AquariumFigure)

Client
(AquaFigCreation)

Client
(FigureHierarchy)

Figure
(AquariumFigure)

Creator
(AquaFigCreation)

object
creation

Figure 4-4: KidsEditor example of using the Figure framework
and the KidsFigures framework extension.

65

These complex figures are instances of classes like AquariumFigure and CircusFigure. They are ex-
tension classes provided as parts of the KidsFigure framework extension of the Figure framework.
(See the section on white-box framework extension for the definition of framework extensions.)

Here, the focus is on how a use-client class makes use of the Figure framework in the face of inheri-
tance and framework extensions.

The KidsEditor class both picks up new free role types and inherits free role types of its Editor super-
class. The full direct coupling of class KidsEditor with the Figure framework and its KidsFigures ex-
tension is therefore defined by the inherited role types Figure.Client and FigureObserver.Observer,
and by the newly acquired role types AquariumFigure.Client, AquariumFigureCreation.Client, etc.

4.3.3 Properties of free role types
Free role types can be classified along two dimensions: the extent to which they constrain a class tak-
ing on the role type; and whether they come with operations that must be provided by the class (call-
back role types). These two dimensions are not orthogonal, both can be considered to be “just” an is-
sue of proper type specification. However, in practice it is helpful to distinguish these two issues.

• Free no-semantics role type. A free role type that imposes no constraints on a class that picks it up
is a no-semantics role type. Its specification is empty. Typically, vanilla Client role types are of
this kind. However, one needs to be aware of hidden assumptions that are obvious to the experi-
enced framework user (and are therefore not specified as part of the role type), but which are non-
obvious to a novice.

An example of a free no-semantics role type is the Figure.Client role type that lets use-client ob-
jects use Figure objects in arbitrary ways (within the context of the Figure role model). This ex-
ample assumes that a Figure object is self-sufficient and does not rely on the client to adhere to
some specification, in case of which the free role type would be a constraining role type.

• Constraining free role type. A constraining role type is a role type that comes with a non-empty
behavioral specification. Typically, the specification requires that an object adhering to this role
type must observe some protocols when collaborating with other objects, for example it may call
some operations only in a certain order (like calling hide only after a preceding draw) [HS88].

An example frequently found are complex initialization protocols, in which some operations may
only be called by clients if other operations have been called before to set up parts of the object
being initialized.

Traditionally, initialization protocols or other specifications are attached to the class whose instances
are to be initialized according to that protocol. It is interesting to note that the role modeling view of
specifying behavior leads to attaching the behavioral specification to the client of a class being initial-
ized. This reflects more adequately that observing protocols are constraints on clients rather than on
the class whose instances are to be initialized using this protocol.

• Free role type with operations (callback role type). Not every role type, be it constraining or no-
semantics, must come with operations of its own. Only the minority of free role types has opera-
tions. Figure.Client has no operations. However, FigureObserver.Observer has.

Typically, the operations of a free role type are callback operations that a framework or a class
model requires to connect back to its clients. Instances of the Observer pattern (like the FigureOb-
server role model) probably account for the majority of such role models.

Role types with operations serve to transfer control back from the framework to a client. This control
transfer is an important design issue, leading to the definition of callback role types.

66

Definition 4-12: Callback role type

A callback role type is a free role type of a framework that has a non-empty set of operations.

Callback role types are important, because having to define operations has the most visible impact on
the implementation of a framework’s class model in a particular programming language. For example,
in Java a callback role type is typically represented as an interface, so FigureObserver.Observer be-
comes the Java interface FigureListener. Free role types that are not callback role types usually do not
require an interface of their own.

4.4 Framework extension
Next to black-box use-relationship-based clients, frameworks also have white-box inheritance-based
clients. Framework extensions are sets of classes that inherit from framework classes. Doing so, they
customize the domain concepts represented by the framework classes to a more specific use, for ex-
ample, in a specific application. This section defines what framework extensions are and how they are
used.

4.4.1 Domains and applications
As discussed, a framework models a specific domain or a pertinent aspect thereof. The domain model
represented by a framework may be specific enough to be directly usable by some use-clients. In this
case, the framework is used as a black-box framework, and no need arises to customize the model to
more application-specific concepts.

Frequently, however, and often desirable, a framework captures only the common parts of a domain
model and leaves the introduction of application-specific model elements to the respective applica-
tions. Thus, each application must (be able to) introduce its own customization of the framework. This
is done through framework extensions.

4.4.2 Framework extension (definition)
A framework extension is the specialization of precisely one framework. Its purpose is to customize
the extended framework’s domain model for a (more) specific purpose, either an application or an-
other framework.

Definition 4-13: Extension class

An extension class of a framework is a subclass of an extension-point class of a framework.

Definition 4-14: Framework extension

A framework extension is a set of classes. Each class is either an extension class of the
framework or a class that is transitively connected with at least one extension class through a
role model.

A framework extension is said to extend the framework of which its classes inherit from.

67

A framework extension may either be a framework or a domain-specific or application-specific exten-
sion that is not a framework. In the first case, the extension can be extended further. In the last cases,
the extensions are no frameworks, and form the leafs of the hierarchy of framework extensions.

Definition 4-15: Domain-specific framework extension

A domain-specific framework extension is a framework extension that is not a framework, but
that can be used by different applications in the same domain.

Definition 4-16: Application-specific framework extension

An application-specific framework extension is a framework extension that is not a framework
and that can be used by one specific application only.

A framework that allows for customization through framework extensions is said to be a white-box
framework [JF88]. It must have a non-empty extension-point class set; otherwise it is a pure black-box
framework.

On this framework level, we can see an analogy to the abstract superclass rule for class hierarchies,
which I call the abstract framework rule. In theory, frameworks can only be abstract (white-box
frameworks) and be prepared for extension through inheritance. So-called black-box frameworks are
actually concrete framework extensions that are either domain or application-specific (and that are no
frameworks).

In practice, we find the same shortcut that we find applied to the abstract superclass rule. A gray-box
framework is a combination of a (white-box) framework, prepared for extension, and a (black-box)
domain-specific framework extension, that cannot be extended further. Packaging the framework and
a default extension together and calling it a gray-box framework is a matter of convenience. Done
right, it does not violate the abstract framework rule.

Much like a framework, a framework extension defines a free role type set for use-clients that want to
make use of the framework extension. It also defines a built-on class set to define the classes it builds
upon. The use of these concepts is analog to their use for a framework. A framework extension inher-
its these sets from the framework it extends. It may only add to them; it may not remove a role type
from a class or a free role type from the free role type set, etc. This ensures substitutability on the
model level.

In principle, a framework extension could be allowed to draw on several different frameworks and
extend them. This is analog to the use of multiple inheritance in class hierarchy design; it is also
equally problematic. Extending several frameworks at once, in particular if multiple inheritance is
used, typically indicates a sub-optimal understanding of the application domains. A mature framework
extension extends only one framework.

Frameworks that are based on two or more frameworks or framework extensions compose them rather
than extend them. Such a framework is still an extension of some other framework, but it uses and
combines the other frameworks or framework extensions as part of their built-on class set. The situa-
tion is analog to using object composition over than multiple inheritance. For practical purposes, one
might make a framework the extension of several other frameworks, but over time, the framework is
likely to evolve into the extension of one framework that uses several others, even if these other
frameworks or framework extensions are specifically made for the framework.

4.4.3 Figure and SimpleFigures framework extensions (examples)
This subsection discusses two examples of framework extensions:

68

• Object framework extension. The Figure framework is an extension of the Object framework. The
example introduces the Object framework and discusses the Figure framework as its extension.

• Figure framework extension. The SimpleFigures framework extension is a framework extension
of the Figure framework. It is not a framework itself, though.

The KidsFigures example of the section on framework use is a third example of a framework exten-
sion, in this case an application-specific framework extension. It is not discussed further here.

4.4.3.1 Figure extension of Object framework

Most systems come with a fundamental Object framework that determines what can be done with any
kind of object. Java and Smalltalk have an explicit Object framework, while C++ has an implicit one.

Figure 4-5 shows an Object framework similar to the one of Java. It has been simplified significantly.
The upper right “…” role model represents a general placeholder for role models that have been
omitted from the figure.

Object
framework

Class

Object

Class
(ClassObject)

Creator
(ObjectCreation)

Instance
(ClassObject)

Target
(ObjectDeletion)

Service
(...)

Deletor
(ObjectDeletion)

Creator
(ClassCreation)

Client
(ClassCreation)

Product
(ObjectCreation)

Key
(DictionaryKey)

Cloneable
(Cloning)

object
creation

Product
(ClassCreation)

Client
(ObjectDeletion)

Client
(ObjectCreation)

Client
(ClassObject)

Client
(DictionaryKey)

Client
(Cloning)

Client
(...)

Figure 4-5: Object framework.

Specification 4-3 presents the textual specification of the framework.
framework Object {

public rolemodel Reader { ... }
public rolemodel Writer { ... }
public rolemodel ClassObject { ... }
public rolemodel Cloneable { ... }
public rolemodel Comparable { ... }
public rolemodel DictionaryKey { ... }
public rolemodel ObjectCreation { ... }
public rolemodel ObjectDeletion { ... }
... More role model definitions.

public abstract class Object {
roletype Reader.Readable;
roletype Writer.Writable;
roletype ClassObject.Instance;
roletype Cloneable.Cloneable;
roletype Comparable.Comparable;

69

roletype DictionaryKey.DictKey;
roletype ObjectCreation.Product;
roletype ObjectDeletion.Target;
... More definition.

}

public class Class extends Object {
roletype ClassObject.Class;
roletype ObjectCreation.Creator;
roletype ObjectDeletion.Deletor;
static roletype ClassCreation.Client;
static roletype ClassCreation.Creator;
roletype ClassCreation.Product;
... More definition.

}

// Free role types of framework.
freeroletypes {

Reader.Client;
Writer.Client;
ClassObject.Client;
Cloneable.Client;
Comparable.Client;
DictionaryKey.Client;
ObjectCreation.Client;
ObjectDeletion.Client;
ClassCreation.Client;

}

// Extension-point class set of framework.
extensionpoints {

Object;
}

... More definition.
}

Specification 4-3: Specification of Object framework.

Specification 4-4 now defines the Figure framework as an extension of the Object framework.
// Figure imports the Common.ObjectProperty
// and Graphics.Graphics role model.
import Common.ObjectProperty;
import Graphics.Graphics;

framework Figure extends Object {
... Role model definitions.

public abstract class Figure extends Object {
roletype Figure.Figure;
roletype FigureHierarchy.Child;
roletype FigureObserver.Subject;
roletype FigureChain.Predecessor;
roletype ObjectProperty.Provider;
roletype Graphics.Client;
... More definition.

}

freeroletypes {
Figure.Client;
FigureHierarchy.Client;
FigureObserver.Observer;
ObjectProperty.Client;
GroupFigure.Client;
GroupFigureCreation.Client;

}

... More definition.
}

Specification 4-4: Revised specification of Figure framework.

70

The role type set of the Figure class comprises the 8+ role types defined by the Object class, and the 6
role types defined by the Figure class itself. Consequently, the free role type set of the framework is
the union of the free role type set of the Object framework and the set of free role types newly intro-
duced by the Figure framework. The specifications show only the addition to the existing inherited
role type sets; they do not repeat the full set. This is possible, because once a role type has been made
public as part of the class or framework, it cannot be withdrawn (for the sake of substitutability).

4.4.3.2 SimpleFigures extension of Figure framework

Most drawing editors that build on the Figure framework also use a basic set of graphical figures from
which they build more complicated application-specific figures. Examples of such basic figure classes
are the Polygon, Triangle, Rectangle, and Text classes.

These basic figure classes are captured as the SimpleFigures framework extension of the Figure
framework. Figure 4-6 shows parts of its design.

Figure
framework

SimpleFigures
framework extension

...

CompositeFigureFigure

TextBoxFigureRectangleFigure

Figure
(RectangleFigure)

Figure
(TextBoxFigure)

0..*

Figure
(Figure)

Predecessor
(FigureChain)

Successor
(FigureChain)

Parent
(FigureHierarchy)

Child
(FigureHierarchy)

Subject
(FigureObserver)

Observer
(FigureObserver)

Creator
(RFigCreation)

Creator
(TBoxFigCreation)

object
creation

object
creation

0..1

0..*

0..1

0..1

Client
(Figure)

Client
(RectangleFigure)

Client
(RectangleFigure)

Client
(TBoxFigCreation)

Client
(TextBoxFigure)

Client
(RFigCreation)

Client
(RFigCreation)

Client
(FigureHierarchy)

Product
(TBoxFigCreation)

Product
(RFigCreation)

Figure 4-6: Part of the SimpleFigures framework extension.

Specification 4-5 describes the SimpleFigures extension of the Figure framework.
// Built-on classes from the Graphics framework.
import Graphics.*;

extension SimpleFigures extends Figure {
rolemodel RectangleFigure { ... }
rolemodel RectangleFigureCreation { ... }
class Rectangle extends Figure { ... }

rolemodel TextFigure { ... }
rolemodel TextFigureCreation { ... }
class Text extends Figure { ... }

rolemodel TextBoxFigure { ... }
rolemodel TextBoxFigureCreation { ... }
class TextBoxFigure extends CompositeFigure { ... }

... More basic figures and their models.

71

freeroletypes {
RectangleFigure.Client;
RectangleFigureCreation.Client;
TextFigure.Client;
TextFigureCreation.Client;
TextBoxFigure.Client;
TextBoxFigureCreation.Client;
... More free role types.

}

builtonclasses {
Graphics.Polygon;
Graphics.Font;
Graphics.Image;

}
}

Specification 4-5: Specification of SimpleFigures framework extension.

The definition of the SimpleFigures framework extension does not provide an extension-point class
set, because it should not be extended. New classes might be added to the framework extension itself,
however.

As with the Figure framework, the handling of existing and new role types is strictly additive. All role
types of Figure and CompositeFigure are inherited, and all free role types from Figure framework are
visible on the SimpleFigures extension level.

4.5 Framework layering
In any non-trivial object-oriented system, frameworks build on each other. Free role types, built-on
classes, and framework extensions provide the primitives to do so. This subsection examines how
these concepts are used to layer frameworks in application systems.

4.5.1 Layers and tiers
Layering in object-oriented systems refers to organizing how classes and class models relate to each
other. This is to be distinguished from how (runtime) components as aggregates of objects relate to
each other. Runtime components are organized in tiers (and sub-tiers). Layering and tiering are inter-
dependent, but not equivalent issues. As used here, layers structure models and their implementation,
and tiers structure runtime components.

Reconsider the drawing editor example. The KidsEditor application builds both upon the Editor
framework and the Figure framework. It might be put into a KidsEditor application layer. The Editor
and Figure framework in turn might be put into a distinct DrawingEditor framework layer. The
DrawingEditor framework layer builds upon the Common framework layer that provides the Object
and Graphics frameworks. This is a third layer.

In object-oriented systems, this kind of layering is seldom strict. More frequently, frameworks extend
or use frameworks from layers below their immediate lower layer. There are no strict rules of how to
define layers and what to put into them. However, they should match the application domain and type
of system under construction. Domain-specific software architectures are now an active research area.
Bäumer et al. present an example of a layering structure for the object-oriented design of interactive
software systems [Bäu98, BGK+97].

72

Tiers, in contrast to layers, refer to how runtime responsibilities are distributed among components.
Typical examples are systems based on three tiers: applications, business services, and databases.
Each tier consists of one or more components. They are independent of any framework structure.
However, frameworks may be used to implement them. An implementation view of these components
reveals a layered framework structure, with common frameworks at the bottom, and component spe-
cific frameworks at the top. Tiering is typically strict, as components are not allowed to circumvent
components of the immediate lower layer.

For our discussion of frameworks, only layering is of interest. Frameworks are not tiered. However,
the concept of tier and layer are frequently confused, which is why this subsection explains the under-
standing of both concepts as used in the following discussion.

4.5.2 Traditional layer coupling
Layers are traditionally coupled using use-relationships and inheritance. Coupling using inheritance
can be subdivided into coupling using concept specialization and coupling using callback interfaces.
In all cases, the higher layer defines which particular type of coupling it uses. However, a particular
coupling becomes only possible if the lower layer allows for it.

In the first type of coupling, control flow is from the higher to the lower layer.

• Coupling using use-relationships. A class in a higher layer makes direct use of a class in a lower
layer. There need not be any specific relationship between the higher-layer class and the lower-
layer class, except that the former needs some of the services of the latter.

In the second and third type of coupling, control flow is from the lower to the higher layer.

• Coupling using concept specialization. A class in a higher layer may inherit from a class in the
lower layer. In this case, the higher-layer class is a specialization of the concept represented by the
lower-layer class. Instances of it may be used wherever instances of the lower-layer class are used.

If an object is an instance of the higher-layer class, any invocation on an instance of the presumed
lower-layer class transfers the control flow from the lower layer to the higher layer. This goes un-
noticed from the use-client of the lower-layer class.

• Coupling using callback interfaces. A framework in some layer may define a callback interface
using an interface or an abstract class. Higher layers implement this interface. The framework ex-
plicitly provides it as a hook for extension. It delegates well-defined pieces of work to objects be-
hind that interface.

A higher layer parameterizes the lower layer with an object of a class that implements the callback
interface. While the lower-layer client of the callback interface makes no assumptions about the
object behind that interface, it is typically aware of that it is transferring control to a higher layer.

The invocation of an operation that transfers control to a higher layer is frequently called an upcall.

The last two means are similar in that they make use of inheritance and late binding. However, prag-
matically they are different. In the first case, inheritance is used to introduce a new concept that ex-
tends a lower-layer concept. The higher-layer class inherits the overall set of responsibilities associ-
ated with the lower-layer class.

In the second case, the callback interface serves as a hook by which a framework delegates one well-
defined piece of work to an unknown client. The implementation of the callback interface does not
represent a new concept; it serves simply as a communications hook.

73

4.5.3 Role–model–based layer coupling
The coupling types just discussed work for class models in general and for frameworks in particular.
Using the concepts of this dissertation, however, they can be defined more succinctly. In particular,
callback interfaces are better described as callback role types. The use of role models brings the same
twist on client responsibilities to framework layering that it has brought to frameworks.

Using role modeling terminology, frameworks are layered using the following coupling mechanisms:

• Coupling using free role types. A layer may build on a lower layer via use-relationships as defined
by a free role model of a lower-layer framework. A higher-layer class picks up a free role type
from a free role model defined by the lower-layer framework.

This coupling is a special case of the use-relationship-based coupling between clients and a
framework, as discussed in Section 4.3 on framework use. A layer must explicitly specify which
of its free role types may act as free role types of the layer and therefore which role models may
bridge between layers.

• Coupling using extension. A layer may build on a lower layer by inheriting from an extension-
point class of the lower-layer framework. This coupling mechanism is identical to the coupling
using concept specialization mechanism, except that we are now using a more precise terminology
(extension-point class).

A layer extension-point class is an extension-point class of a framework that can be inherited from
across layer boundaries. A layer must explicitly declare its layer extension-point classes. Also, the
layer may only do this for frameworks that are defined by it. It may not redefine frameworks from
lower layers.

• Coupling using callback role types. A layer may build on a lower layer by assigning callback role
types of the lower layer to one of its classes. This coupling mechanism is a specialization of the
general coupling using free role types mechanism.

A callback role type is a free role type of a framework that has a non-empty set of operations (see
Subsection 4.3.3). It may be picked up by higher-layer classes. Callback role types are the role
modeling equivalent of callback interfaces as defined in the previous subsection on traditional
coupling mechanisms.

The distinction between classes and role types brings out the different pragmatics of the layer coupling
mechanisms.

In an instance of coupling using extension, a higher layer introduces a class model as an extension of a
lower-layer framework. This may involve several new classes, each of which may be an extension
class of the lower-layer framework. At runtime, instances of these classes are used where framework
instances are expected. Often, in particular in case of covariant redefinition, they are used in concert
and appear as a team.

In an instance of coupling using free role types, a higher-layer class makes use of lower-layer classes
based on traditional use-relationships. The higher-layer class picks up the free role type. Its instances
may then collaborate with framework objects based on the free role model the free role type is defined
by. The free role model acts as a bridge between layers. It defines precisely what higher-layer clients
have to do to make use of lower-layer frameworks. The discussion of black-box framework use ap-
plies to this type of layer coupling.

In an instance of coupling using callback role types, a higher-layer class picks up a callback role type
from a lower-layer framework. The discussion of coupling using free role types applies, with the addi-
tion that the higher-layer use-client class is aware that control may be transferred to its instances at
runtime.

74

This role modeling view on layer coupling provides all the benefits that free role models and exten-
sion-point classes have brought to framework design and use.

4.5.4 KidsEditor framework layering (example)
This subsection uses the KidsEditor application system as an example to discuss framework layering.

The KidsEditor system consists of several class models, some of which are frameworks, some of
which are domain and application-specific framework extensions. The following discussion distin-
guishes three main categories, which it organizes into three different layers.

• Common framework layer. This layer comprises the Object, Graphics, and Serialization frame-
works (among others). Graphics and Serialization are extensions of the Object framework. The
Object framework defines the fundamental Object and Class classes, the Graphics framework de-
fines the Graphics and related classes as discussed earlier, and the Serialization framework pro-
vides classes for making objects persistent.

• DrawingEditor framework layer. This layer comprises the Editor and Figure frameworks, and the
SimpleFigures framework extension. Editor and Figure extend the Object framework, SimpleFig-
ures extends the Figure framework. The Editor framework provides the main application classes
and their functionality. Figure and SimpleFigures are discussed above.

• KidsEditor application layer. This layer comprises the KidsEditor and KidsFigures framework
extensions. KidsEditor extends Editor, and KidsFigures extends Figure. Both are application-
specific framework extensions that are not frameworks themselves.

Taken together, the two base layers, Object and DrawingEditor, form what is frequently called an ap-
plication framework. An application framework may be viewed as a composite framework, that is an
aggregate of further smaller frameworks.

Figure 4-7 visually depicts the layering structure of the KidsEditor application system. The type of
arrows between the class models indicates the type of coupling between the layers being bridged. A
white arrowhead indicates a framework extension, and a slim black arrowhead indicates a use-
relationship based on free role types.

Object

Serialization Graphics ...

Figure

KidsFigures

SimpleFiguresEditor

KidsEditor

KidsEditor
application layer

DrawingEditor
framework layer

Common
framework layer

Figure 4-7: Layering of KidsEditor application system.

The layered structure of the application system can also be described textually. Specifications 4-6 to 4-
8 show how this looks like, taking into account the specific layer coupling mechanisms. The shortcut

75

Object.freeroletypes indicates that all free role types from the Object framework are taken and pro-
vided as the free role types of the Common framework layer.

layer Common {
framework Object;
framework Serialization;
framework Graphics;

freeroletypes {
Object.freeroletypes;
Serialization.freeroletypes;
Graphics.freeroletypes;

}

extensionpoints {
Object.extensionpoints;
Serialization.extensionpoints;
Graphics.extensionpoints;

}
}

Specification 4-6: Common layer.

layer DrawingEditor {
framework Editor;
framework Figure;
extension SimpleFigures;

freeroletypes {
Editor.freeroletypes;
Figure.freeroletypes;
SimpleFigures.freeroletypes;

}

extensionpoints {
Editor.extensionpoints;
Figure.extensionpoints;

}
}

Specification 4-7: DrawingEditor layer.

layer KidsEditor {
extension KidsEditor;
extension KidsFigures;

// No free role types.
freeroletypes {}

// No extension of layer.
extensionpoints {}

}

application KidsEditor {
// Set of included frameworks is the transitive closure
// of all class models reached from the root set given here.
extension KidsEditor;
extension KidsFigures;
extension SimpleFigures;

}

Specification 4-8: KidsEditor layer and application.

Frequently, all free role types of a framework become free role types of the layer the framework is
defined in. Sometimes, free role types are restricted to be visible only within a given layer. This may
be used to confine framework extension to one specific layer.

76

4.6 Framework documentation
This section analyses the consequences of a role modeling approach to framework design on frame-
work documentation. It defines a template for framework documentation that helps to make docu-
mentation more precise and more helpful in the face of complex object-oriented frameworks.

4.6.1 What and when to document
Any documentation of a framework serves at least one of several purposes. Two primary purposes of
documentation are the explanation of how to use a framework (external client view) and the explana-
tion of how a framework works to change and evolve it (internal view).

Each instance of a documentation type takes on its particular form, depending on where the complex-
ity of using or understanding a framework lies. This form depends on the technique being chosen to
illuminate and explain a particularly complex aspect of a framework. For example, formal specifica-
tions can be chosen if expected behavior needs to be defined in detail, design patterns can be used if
the design rationale of a framework needs to be communicated, or cookbooks can be used if recipe-
like learning by example is considered most helpful.

A technique should be chosen judiciously. For example, if the design is simple, a simple approach
may suffice. Or, if source code and a mature browsing environment are available, less needs to be
documented. Role modeling as a documentation technique should be chosen if the complexity of
classes, object collaborations, and requirements put upon use-clients is non-trivial.

Writing good documentation is hard and frequently tiresome. In practice, therefore, developers or
vendors try to make a documentation serve many different purposes at once, to reduce their work.
Also, using a framework and understanding its inner workings are issues that depend on each other.
Therefore, a framework’s documentation is often a hybrid, serving different purposes.

The most common type of documentation is the reference or API documentation. It is also the most
basic one. A reference documentation lists the framework classes, possibly with some explanation,
and then describes each operation of a class in detail. This minimal type of documentation serves to
explain the contents of some library or package, without much consideration for the design or ways of
using it.

Frequently, reference documentation is generated from source code with the support of dedicated tools
like Javadoc. Examples are the JDK 1.02 and 1.1 documentation, the BeOS reference documentation,
and the Unix man pages [Sun96a, Sun96b, Be97].

Of more interest is the design documentation of a framework, which is about how a framework works
(internal view). It describes its full design, including all relevant details. The documentation includes
the classes, their collaborations, dependencies, and constraints on how to use them. Design documen-
tation describes the inner workings of a framework and can therefore be used for many different pur-
poses. Its primary purpose, however, is to help developers understand the framework to change and
evolve it.

Finally, documentation is needed that describes how a framework is to be used (external client view).
Such usage documentation needs to cover both ways of using a framework (use-clients and extension
clients). Again, documenting a framework means choosing techniques to describe particular frame-
work aspects. Therefore, not much can be said about usage documentation in general.

However, role modeling can be used to address several issues that arise in the documentation of a
framework.

77

4.6.2 How role modeling can help
Role modeling can help to make the three types of documentation just discussed more effective.

• Reference/API documentation. Reference documentation consists of class descriptions. If the class
interfaces are complex and non-trivial, they can be split up into role types. Smalltalk, for example,
provides a related feature in its system browsers: methods can be grouped into method categories.
Such method categories reduce the complexity of class interfaces without much additional effort.

• Design documentation. The design documentation of a framework can be based on role models to
describe the internal and external object collaborations. Next to the discussion of the role models,
such a design discussion needs to define the classes as compositions of role types. These two di-
mensions, classes and role models, depend on each other.

• Usage documentation. The usage documentation of a framework can use role models to describe
the client interaction as a set of free role models. Also, it can use the concept of extension-point
classes to determine how to extend a framework. A framework’s reference documentation can be
viewed as part of such usage documentation.

Wherever a role model is used, it might be identified as an instance of a particular design pattern.
Identifying design patterns helps to speed up understanding the role model and the described design
aspect.

Also, role modeling can be applied selectively as a technique to focus on specific aspects of a frame-
work, without having to use all of the concepts at once.

Therefore, role modeling is an evolutionary addition to current documentation techniques. It does not
invalidate them, but rather adds to them to help make documentation more precise where necessary.

4.6.3 A simple design documentation template
This subsection defines a simple template for documenting the design of frameworks using role mod-
eling. The template is used in the case study Chapters 6 to 8. It is not meant to be complete; rather, it
provides the most important parts only.

The description of a framework is broken up into the following pieces, presented in that order:

1. Framework overview. This section gives an overview of the whole framework and describes its
purpose. It lists its key classes, responsibilities, and collaborations. It lists frameworks built upon.

2. Class model. This section walks through the list of framework classes, explains their purposes,
responsibilities, and collaborations, as well as the inheritance structure.

3. Free role models. This section describes the free role models of the framework. It describes in
detail the requirements put upon use-clients that want to make use of the framework.

4. Internal role models. This section lists the framework-internal role models that structure the op-
erations of the framework and help it provide its primary services.

5. Built-on classes. This section describes how framework classes build upon other classes. It lists
the built-on classes and the role models through which framework classes connect to the built-on
classes.

Sometimes, the free role model and the internal role model section are merged into one. To better il-
lustrate how the framework is extended, the documentation may be accompanied by an example
framework extension.

78

6. Example extension. This section describes an example extension that illustrates how to extend the
framework using inheritance. It may be used as a recipe for applying the framework in further
domains.

The example extension is described using the same template as this very template, so it comprises an
overview, class model, role models, and built-on classes.

The case study chapters present several examples of frameworks documented using this template.

4.7 Summary
This chapter has applied the role modeling concepts from Chapter 3 to the design of object-oriented
frameworks. It has covered framework use through use-clients, framework extension through inheri-
tance, framework layering for application design, and framework documentation based on role mod-
eling.

The next chapter focuses on how to describe and implement role–model–based designs using industry
standards like UML, Java, and Smalltalk. After this, the case study chapters and their evaluation fol-
low.

5
Extension of
Industry Standards

Role modeling for framework design is a new technique, for which no standard exists. Current indus-
try design notations and programming languages provide no direct support. While standard design
notations and programming languages provide classes and objects, they do not support role types, role
constraints, and role models. However, standards are important, because they provide developers with
a shared vocabulary and tool support. This chapter discusses how to extend industry-standard design
notations and programming languages with role modeling concepts. Extensions are provided for
UML, Java, C++, and Smalltalk.

5.1 Chapter overview and motivation
Role modeling for framework design introduces new concepts and extends established ones. Effec-
tively, it forms a new design method. However, many of the concepts cannot be expressed directly
using industry-standard design notations and programming languages.

Some of the new or revised concepts map well on concepts of current design notations and program-
ming language standards. For example, the concept of class maps well on the UML concepts of inter-
face or class. Other concepts, for example, the role model concept, are more difficult to map, because
no equivalent concept exists.

Role modeling for framework design is only a part of what could be a full-blown design method. It
ignores many issues that are needed for an industrial-strength design method. One possible conclusion
might therefore be to develop a new full-blown design notation and programming language that di-
rectly supports role modeling.

80

This approach has the following advantages:

• Developers can directly express framework designs. No mental gap between the concepts behind a
design and its expression using a specific notation must be maintained.

• Given adequate tools, framework design and implementation can be checked for conformance
based on the new concepts. Such checks may significantly reduce the error rate.

However, this approach also has the following disadvantages:

• Role modeling for framework design is an evolutionary addition to existing approaches. It does
not try to replace existing standards and should therefore extend rather than replace them.

• The development of a full-blown industrial-strength modeling approach requires a substantial
amount of work. A new approach would distinguish itself only through its new framework design
concepts.

• Developers would have to learn yet another new method. This increases the time until they pro-
ductively join a project and makes it more difficult to find people that are willing to maintain a
system.

• No tool support or no tool support comparable to the support for mainstream notations is avail-
able.

For practical purposes, it is preferable to extend existing industry standards with the new role model-
ing concepts rather than to introduce yet another approach that is incompatible with the existing ones.
An extended industry standard provides the new concepts and still lets developers get to work quickly.
This approach faces less developer resistance, with tool support being available right from the begin-
ning.

A dedicated design notation and programming language for role modeling can be introduced later,
should role modeling for framework design reach widespread acceptance. In fact, role programming
techniques like [Van97, VN96] and general purpose programming language extensions like aspect-
oriented programming [KLM+97] already point into that direction.

This chapter discusses how to extend industrial-strength design notations and programming languages
with the new role modeling concepts. First, it discusses requirements and properties common to all
these extensions. Then, the chapter introduces an extension of one design notation, UML. Finally, it
provides extensions of the programming languages Java, C++, and Smalltalk.

5.2 Common properties
This section discusses how industry standards can be extended with role modeling concepts, and how
mappings between standards ease the introduction of a new extension. The section also lists properties
that should be common to all role modeling extensions of existing industry standards. It reviews the
concepts that must be provided by each such extension and introduces a simplified version of the Fig-
ure framework example.

5.2.1 Extending an industry standard
A successful extension of an industry standard is only possible if the extension blends in well with the
existing concepts and their idiomatic use. Otherwise, the extension would feel alien to the developers

81

and be rejected. Fortunately, role modeling for framework design was intended to be an extension of
known concepts right from the beginning.

As a consequence, the industry standard will take on the dominant role, and the role modeling con-
cepts that extend it must come natural to users of the standard. They must be expressed in terms of the
standard’s concepts or extension mechanisms. Chapters 3 and 4 define and discuss the role modeling
concepts in standard-neutral terms to ease the extension of different standards and put them onto a
common basis.

Figure 5-1 illustrates how the role modeling concepts extend the four standards discussed in this
chapter (UML, Java, Smalltalk, and C++).

UML Java Smalltalk C++

UML
Role Modeling

Role Modeling

Java
Role Modeling

Smalltalk
Role Modeling

C++
Role Modeling

implementation

extension

standard

design

Figure 5-1: Extension of industry standards with role modeling concepts.

Figure 5.1 illustrates two types of relationships: extensions and mappings.

• Extensions are role modeling extensions of the respective industry standard. For example, UML
Role Modeling is an extension of UML within the confines of UML. An extension is the definition
of role modeling concepts in terms of the existing standard’s concepts and extension mechanisms.

• Mappings are mappings between the general role modeling concepts and a role modeling exten-
sion of a specific industry standard. A mapping is a function that explains how a role modeling
concept is represented in a specific standard.

Being explicitly aware of the mappings is important, because it helps introduce new industry standard
extensions quickly and without much overhead. For example, if a new programming language is de-
fined, and UML tool support for that language exists, the extension of the new programming language
with role modeling concepts can be described as the composition of three functions MRM/UML, EUML/RM,
and MUML/PL:

• MRM/UML is the mapping from the general role modeling concepts to the UML Role Modeling con-
cepts.

• EUML/RM is the extension of the UML concepts with the UML Role Modeling concepts.

• MUML/PL is the mapping between UML and the new programming language.

A more detailed and direct extension of the programming language can be introduced later.

The mappings are typically one-way mappings. Depending on the target of the mapping, it cannot be
guaranteed that an inverse mapping exists. In any such mapping, information from the domain is lost.
This is one reason, why it is better to provide direct extensions of the programming languages rather
than using a mapping detour through UML as just illustrated.

82

The other reason is that it is more convenient to use a direct extension rather than carrying out the
composition of three mappings. Still, if a new programming language is introduced, for which no di-
rect extension exists yet, developers can use this mechanism.

5.2.2 General requirements
The extension of an industry standard with role modeling concepts must not only be as precise as pos-
sible, but it must also match the way developers work with the extended standard and the base stan-
dard.

Ideally, the following requirements are fulfilled when defining an extension:

• Robustness. A design or program based on the extended standard must be robust with respect to
interpretation and handling by developers who do not understand the extension. Developers must
still be able to work on the design.

• Inconsistency. Also, a design that is inconsistent from the extension’s point of view must not
block the system in any respect (for example, browsing, type checking, or code generation). As a
corollary to the robustness requirement, developers must still be allowed to work productively
with an inconsistent design.

• Incompleteness. The design must allow evolutionary adding of elements based on the extended
standard rather than requiring that the design be fully compliant with the extension right from the
start. Thus, the extension must allow for its partial application.

• Tool support. Non-trivial designs require tool support, such as Rational Rose, Paradigm Plus,
Visio, etc. The extended standard must take into account how users handle designs visually. (This
is one reason why, for example, the UML notation guide describes a concrete visual syntax rather
than an abstract syntax only.)

• Bridge between design and implementation. An extended standard should not complicate bridging
between design and implementation. A design usually keeps evolving close to its implementation.
Developers avoid making the gap between design and implementation too large to reduce intel-
lectual mismatch.

Providing robustness, dealing with inconsistency, and dealing with incompleteness ensures a low entry
hurdle to using role modeling. Because designs may be incomplete, the initial investment may scale
from zero to the full application of the method. Because a design may be inconsistent from a role
modeling perspective, the whole system (tool + design) stays operational at any point in time.

Providing robustness is the hardest requirement. It prevents that the mapping introduces additional
complexity and uncommon semantics into a design that is otherwise easily interpretable using general
knowledge of the underlying design notation.

5.2.3 Handling role types and role models
UML, Java, C++, and Smalltalk provide support for classes and their packaging, next to a wealth of
other concepts. Role modeling for framework design requires support not only for classes, but also for
role types, role constraints, role models, class models, and frameworks. None of the industry standards
discussed in this chapter provides native support for these concepts.

However, developers always have modeled and implemented class models and frameworks. They
typically use the standard’s packaging mechanism to define what goes into a class model or frame-
work, and they use the naming mechanism and conventions of the standard to separate different mod-

83

els. We can therefore use the packaging mechanism to define role models, class models, and frame-
works.

Each section of this chapter on extending a specific standard shows how the role modeling concepts of
class, role model, class model, and framework are represented using native concepts. The representa-
tion is typically based on the standard’s concept of type, class, and packaging.

The primary challenge is to adequately extend a standard with the role type, role constraint, and role
model concept, and to define how they relate to classes and class models. For each standard, this is
done differently. Role constraints do not require much discussion, but role types do, due to the many
different ways of using them.

Let us assume that a standard provides a simple means to represent a type, for example a UML or Java
interface. A role type could then be expressed using an interface. However, different kinds of role
types have different pragmatics, and it is questionable whether one concept of interface fits all uses of
the role type concept. Moreover, given the high number of role types in a design, the naive approach
faces an explosion in the number of interfaces.

For expressing role types, we face the following options:

• Leave role types implicit in a class interface.

• Make role types explicit in a class interface by annotating them (for example, through method
categories).

• Make role types explicit as interfaces of their own.

For expressing role models, we face the following options:

• Leave role models implicit by leaving all of their role types implicit.

• Make a role model explicit as part of a class model by packaging role models with their class
model.

• Make a role model explicit and reusable for different class models by packaging it on its own.

Design and implementation use these options differently. In design, typically every important design
decision should be recorded and expressed. In implementation, only all implementation decisions
should be explicit, but there is no need to directly reflect the full design.

The design notation and the programming language sections introduce their respective rules below.

5.2.4 Figure framework (example)
This chapter uses a simplified version of the Figure framework as its example. Figure 5-2 shows its
design.

The Figure framework comprises two classes (Figure and CompositeFigure), builds on the Graphics
class, and extends the Object framework. The dynamics of the framework are defined by the Ob-
jectProperty, Figure, FigureChain, FigureObserver, FigureHierarchy, and Graphics role models.

The framework is discussed in depth in Chapters 3 and 4. It offers all constellations that we need to
discuss.

• ObjectProperty is a reusable role model. All other role models are non-reusable.

• Figure.Figure, FigureObserver.Subject, etc. are regular role types without further qualification.

• FigureObserver.Observer is a free role type that has operations.

• Figure.Client, FigureHierarchy.Client, and Graphics.Client are free no-op role types.

84

Figure
framework

Object
framework

Object

Figure

CompositeFigure

Graphics

Provider
(ObjectProperty)

0..*

0..*

0..* 0..1

0..1

Figure
(Figure)

Predecessor
(FigureChain)

Child
(FigureHierarchy)

Successor
(FigureChain)

Observer
(FigureObserver)

Parent
(FigureHierarchy)

Subject
(FigureObserver)

Observer
(FigureObserver)

Graphics
(Graphics)

Client
(Graphics)

0..1

Property
(ObjectProperty)

Client
(ObjectProperty)

Client
(Graphics)

Client
(Figure)

Client
(FigureHierarchy)

Figure 5-2: The (simplified) Figure framework.

Sections 5.3 and 5.4 show how the framework is expressed in UML and implemented in Java, C++,
and Smalltalk.

5.3 Design notations
This section discusses how to extend a design notation. It provides one example: the extension of
UML with role modeling concepts for framework design. The discussion omits the trivial parts and
focuses on the higher-level concepts of role type, role constraint, class, role model, class model, and
framework.

85

5.3.1 Extending design notations
A design notation must provide means to record and document all relevant design decisions. In con-
trast to programming languages, which usually let developers make only parts of a design explicit in
the implementation, should a design notation let developers record all relevant information (whether
they do so is another question).

Therefore, the extension of a design notation must cater for all new or revised modeling concepts, in-
cluding role type, class, role constraint, role model, class model, and framework. Also, it should be
possible to express variations of specific design concepts, like free role types and no-operation role
types.

This section does not discuss how to express the dynamic behavior of objects acting according to a
class type or role type. The definition of such a notation is left to the available type specification
mechanisms. UML, for example, offers object and sequence diagrams to illustrate runtime object be-
havior. Also, more elaborate approaches like Extended-Event-Traces [BHKS97] or others can be used.

The rules for expressing role models, class models, and frameworks on a design level are simple:

• Class model. A class model should be represented explicitly. It gets at least one package. For
structuring complex models, more packages can be used.

• Reusable role model. A reusable role model should be represented explicitly. It should be pack-
aged independently of a specific class model in which it is used, for example, in a package of re-
usable role models.

• Non-reusable role model. A role model that is used once in a class model need not be packaged on
its own. It should go into the class model’s package. Within that package, it might get its own dia-
gram or not, depending on the significance of the role model.

Role types of a reusable role model should always be made explicit, both in design and implementa-
tion.

For non-reusable role models, the situation is more complicated. As discussed, we can qualify role
types as being free and/or no-op. These properties lead to the following kinds of role types and their
rules for being left implicit or made explicit:

• Role types. Regular non-free role types with operations should be made explicit, because they rep-
resent an important design aspect that needs to documented explicitly.

• Free role types (both no-op and with operations). Free role types should be made explicit, because
they may be picked up by more than one client class, and because they represent an important de-
sign aspect.

• Non-free no-op role type. A non-free no-op role type may or may not be made explicit. It is only
used within the context of the current class model; hence the number of uses is fixed.

Thus, role types of a non-reusable role model should be made explicit if they are regular or free role
types. If they are non-free no-op role types, a developer may decide to not explicitly represent a role
type but to reduce it to an annotation of the class providing the role type.

5.3.2 Extending UML with role modeling
UML offers a rich metamodel for modeling object systems, which makes it easy to extend it with role
modeling concepts. The extension of UML with role modeling concepts relies only on three basic
UML concepts: Class, Interface, and Stereotype.

86

• A class maps either on a UML class or a UML interface. Whether a class or an interface is chosen
depends on the complexity of implementing the class. A lightweight class is typically represented
as a UML class, while a heavyweight class, for which several implementations exist, or which has
many role types, is represented as a UML interface.

• A role type maps on a UML interface tagged with the «RoleType» stereotype. Such an interface is
called a role-type interface. A free role type is represented as a «FreeRoleType» interface, a no-op
role type as a «NoopRoleType» interface, and a free no-op role type as a «FreeNoopRoleType»
interface.

• A role constraint between two role types is mapped on a textual annotation of the relationship
between the two role types. If no annotation is provided, the default case (role-dontcare) is as-
sumed.

• A role model or a class model maps on a class diagram. There is no need to make a class diagram
for every role model, but if a role model is reusable, it should get its own class diagram.

• A framework also maps on a class diagram. In addition, it might be packaged as its own compo-
nent, drawing visible boundaries to the outside.

InvalidPropertyException
InvalidPropertyException()
isTypeInvalid()
isValueInvalid()

Property.Client
<<FreeNoopRoleType>>

Property.Property
<<FreeNoopRoleType>>

Property.Provider
hasProperty()
acceptsProperty()
getProperty()
getDefaultProperty()
getProperties()
acceptsPropertyType()
getPropertyTypeNames()
setProperty()
unsetProperty()

<<FreeRoleType>>

0..*

role-prohibited
(a Provider may
not be its own
Property)

typically, Property
objects have
value semantics

0..*

Figure 5-3: The ObjectProperty role model as a UML class diagram.

87

When working with UML Role Modeling, developers use UML classes and interfaces as they are used
to. If needed, they add additional role type and role model information. They tag interfaces and classes
as specific kinds of role types, and make the role models explicit by connecting role-type interfaces
and classes.

Figure 5-3 shows the ObjectProperty role model using a UML class diagram. It uses the color coding
introduced earlier: free role types have a light-gray background.

The ObjectProperty role model is a reusable role model that should be packaged on its own, or, at
least, should get its own diagram. Property.Client, Property.Provider, and Property.Property are role-
type interfaces. Because the ObjectProperty role model is a reusable role model, all of the role types
are free. In addition, the Property.Client and the Property.Property role types are no-op role types.

CompositeFigure

hasChild()
addChild()
addChildren()
remov eChild()
remov eAllChildren()
getChildren()
handleDeleteRequest()
handleInv alidateRequest()

<<Interf ace>>

DeleteRequest

DeleteRequest()

Inv alidateRequest

Inv alidateRequest()

Figure

draw()
drawOutline()
getOrigin()
setOrigin()
getExtent()
setExtent()
place()
mov e()
resize()
hasParent()
getParent()
may SetParent()
setParent()
hasFigureListener()
addFigureListener()
remov eFigureListener()

<<Interf ace>>

FigureHierarchy Client
<<FreeNoopRoleTy pe>>

FigureEv ent

FigureEv ent()
getFigure()

Figure.Figure
<<RoleTy pe>>

Request

init ialize()
getTy peName()
getSource()

Graphics.Graphics
<<RoleTy pe>>

Graphics.Client
<<FreeNoopRoleTy pe>>

11

Graphics

(from awt)
Figure.Client

<<FreeNoopRoleTy pe>>

FigureHierarchy .Parent

hasChild()
addChild()
addChildren()
remov eChild()
remov eAllChildren()
getChildren()

<<RoleTy pe>>

FigureHierarchy .Child

hasParent()
getParent()
setParent()

<<RoleTy pe>>

0..1

0..*

+parent
0..1

+child
0..*

Property .Prov ider

hasProperty ()
acceptsProperty ()
getProperty ()
getDef aultProperty ()
getProperties()
acceptsProperty Ty pe()
getProperty Ty peNames()
setProperty ()
unsetProperty ()

<<FreeRoleTy pe>>

Property .Client
(from ObjectProperty)

<<FreeNoopRoleTy pe>>

FigureObserv er.Observ er

f igureChanged()
f igureRemov ed()
f igureInv alidated()

<<FreeRoleTy pe>>

FigureObserv er.Subject

hasFigureListener()
addFigureListener()
remov eFigureListener()

<<RoleTy pe>>

0..*0..*

ChainSuccessor
getPredecessor()
handleRequest()

<<RoleTy pe>>

ChainPredecessor

getSuccessor()
may SetSuccessor()
setSuccessor()

<<RoleTy pe>>

0..1

0..1

0..1

0..1

Figure 5-4: The Figure framework as a UML class diagram.

88

Please also observe the use of the class InvalidPropertyException without any further qualification.
This reflects the pragmatic approach of robustly embedding the role modeling concepts into an exist-
ing standard. From a UML perspective, the role-type interfaces are just interfaces that relate to other
interfaces and classes without further qualification.

Figure 5-4 shows the Figure framework using a UML class diagram. In addition to coloring free role
types in light-gray, it colors role modeling classes in dark-gray. Please note that Figure and Compo-
siteFigure are conceptually classes from a role modeling perspective, but are represented as UML in-
terfaces. As explained, this decision is a matter of expected convenience of implementation.

Figure 5-4 shows how different kinds of role types are represented:

• Examples of role-type interfaces are FigureHierarchy.Child and FigureChain.Predecessor.

• Examples of free role-type interfaces are FigureObserver.Observer and ObjectProperty.Provider.

• There are no examples of non-free no-op role type interfaces.

• Examples of free no-op role type interfaces Figure.Client and FigureHierarchy.Client.

Most of the role models bound to this class model are not made explicit. They exist only in this dia-
gram, and are implicitly represented by the naming convention of their role types.

The role modeling classes Figure and CompositeFigure are represented as UML interfaces, while the
(simplified) helper class Request is represented as a UML class.

5.3.3 Extension properties
The following discussion shows how the extension properties asked for in Section 5.2 are realized by
the UML role modeling extension. It thereby describes the rationale behind the extension.

• Robustness. The interpretation of a UML Role Modeling class diagram can be done by any devel-
oper who knows interfaces and classes, and who is told that a roletype interface represents a type
that is part of the class type it is extended by. This is the minimal effort required.

• Inconsistency. Standard UML allows classes and interfaces to directly refer to each other. Thus,
role-type interfaces may refer to other UML classes and interfaces, without an intermediate role-
type interface. From a role modeling perspective, such direct reference indicates that the design
may not yet be done and that further elaboration will provide the missing role types.

• Incompleteness. Designs may be inconsistent, and therefore incomplete.

• Tool support. The mapping uses only basic UML concepts. These concepts are the first to be pro-
vided by a UML based modeling tool, so that tool support for UML Role Modeling is readily
available, even if the tool supports only a subset of standard UML. If code generation needs to be
supported in more detail, additional stereotyping of interfaces can provide missing information
and control back-end code generation.

• Bridge to implementation. The mapping supports modeling close to the implementation level. In
an implementation, a UML interface typically maps onto the interface concept of a programming
language, while a UML class directly maps on an implementation class. Mapping a role modeling
class on a UML interface or class lets developers make this distinction on the design level and
supports code generation.

The definition of the mapping uses the most common abstractions only, because developers best know
them, and because the UML definition still evolves, as it is imprecise and unclear in many instances
[BHH+97].

89

5.4 Programming languages
Every framework is eventually implemented using a programming language, independently of
whether it was designed using role modeling or not. Typically, programming languages provide only
meager support for representing design-level concepts that go beyond individual classes. This section
analyses which of the role modeling concepts to map to a programming language and how to do so.
The section covers Java, C++, and Smalltalk.

5.4.1 Extending programming languages
Programming languages provide mechanisms for source code definition and structuring. Designers of
programming languages typically do not include higher-level design concepts like role model, class
model, or framework in the language definition. These concepts are left to the design level of software
system development, as opposed to the implementation level, the support of which is the primary con-
cern of programming language designers. All programming languages covered in this section exhibit
this property.

The distinction between design and implementation relaxes the situation. While a design must capture
all relevant design details, an implementation must only provide a proper implementation of the de-
sign, but not the design itself. Hence, there is no need to extend a programming language with all role
modeling concepts. Rather, it is sufficient to provide those concepts that let us implement a design in
such a way that we find our way back to the design documentation and do not have to bridge too far a
mental gap when doing so.

For identifying role models, class models, and frameworks, the packaging mechanism of a given pro-
gramming language can be used. Implementation-level packaging follows the same rules as design-
level packaging:

• A class model gets its own package (at least one).

• A reusable role model gets its own package.

• A non-reusable role model becomes part of the package of a class model.

Implementation-level role types can be expressed using interfaces or equivalent concepts. All role
types of reusable role models should be explicit. For role types from non-reusable role models, the
following rules apply:

• Role type. A regular role type need not be made explicit as an interface. It can be merged with the
class interface. It is helpful, though, to annotate the operations of a class interface with the role
type names.

• Free role type. A free role type with operations must be represented explicitly, so that clients can
pick up the role type by inheriting from it or copying it.

• No-op role type. A no-op role type that is not free need not be made explicit. However, it is help-
ful to annotate a class as providing a particular no-op role type.

• Free no-op role type. A free no-op role type may or may not be made explicit. Because the role
type is free, it is important to see it explicitly. Because it is no-op, simply tagging a client class
might be sufficient.

A class should list all of its role types, including no-op role types, and it should annotate an operation
with the role type name from which it is derived. If a role type is explicit, this happens automatically.
If a role type is not made explicit, developers need to do this by hand.

90

Role constraints are not made explicit. This feature of the role modeling technique is most useful on
the design level to communicate the idea behind a role model. It is left to the implementation of a class
to ensure that a role constraint is maintained. The role types or class interfaces involved may docu-
ment the constraint, though.

To support the annotation of class interface with role type and role model information, specialized
documentation tools can be used. For example, Java’s javadoc and its variants in other programming
languages provide lightweight annotation features that support documentation, code generation, and
round-trip engineering between design and implementation.

5.4.2 Problems of programming language extension
The pragmatic extension of programming languages described above is too weak for properly check-
ing the conformance of a design with its implementation. Such conformance checking is desirable,
because it lets us catch implementation errors as early as at compile-time. However, conformance
checking is typically done only for very specialized areas of software system design. The critique
therefore applies to the whole of object-oriented modeling.

More immediate problems occur due to the composition of role types to form a class type. Most pro-
gramming languages do not support type specification and composition. Eiffel is an exception of a
close-to-mainstream programming language that provides several useful features of this kind, in par-
ticular a lightweight type specification mechanism (design by contract [Mey91, Mey92b]), and a re-
naming feature [Mey92].

The following problems arise from the need to compose role types:

• Name clashes. Different role types might define two identical operations. However, their seman-
tics is different, and they are used for different purposes. The operations must be distinguished,
and the naming conflict must be resolved.

• Redundant operations. Different role types might define operations that have different signatures,
but the same implementation. In the Figure framework example, operations getParent and getSuc-
cessor always return the same object reference, making one implementation redundant.

• Mapping of abstract state on implementation state. Each role type comes with its own state space
definition. When composing role types, the state spaces of the role types must be mapped on the
single state space of the class type, for which a proper implementation state space must be defined.

The first problem, name clashes, is a common problem that is independent of the approach presented
here. Some programming languages offer explicit renaming features. If no such feature is available,
the names must be changed to avoid the conflict. Usually, the operation names are pre- or postfixed to
indicate their origin.

The second problem, redundant operations, is not a real problem, but rather an issue of style. Should a
redundant operation be removed? Names are important, even if two operations do the same. Each cli-
ent expects operation names that are best suited for the task at hand. Therefore, redundant operations
should not be removed. Rather, they should be named well and implemented using common primitive
operations.

The last problem, the definition of the implementation state space of a class, results from the larger
problem of type composition. The programming languages considered here describe the semantics of
some operation using prose. The only aspects described formally are the parameters and return values
of the operations of a role type. They define the abstract state space that clients see of an object play-
ing a role defined by the role type.

A developer of a class must define how the abstract state spaces of the role types are composed to
form the abstract state space of the class. For the abstract state space of a class, the developer must

91

then find a suitable and efficient implementation. In practice, the intermediate step of defining the ab-
stract state space of a class is not explicit, and a class is implemented by deriving its implementation
state space directly from the role types.

In the end, this is not a problem that can be treated on a general level, and it is up to every developer to
find a suitable implementation state that lets him or her efficiently implement the different role types.
Frequently, a class internal set of primitive operations is used by the role type implementations to ma-
nipulate the common implementation state. Also, the implementations of role type operations call each
other to communicate a state change. Implementing this is an issue of proper programming practice,
and not considered further here.

5.4.3 Extending Java with role modeling
Java provides interfaces, classes, and packages as concepts that can be used to implement role–model–
based designs. Java interfaces and classes can be used to represent role types and classes, and Java
packages can be used to provide a namespace for role models, class models, and frameworks.

A role type is represented as a Java interface. A class is represented as a Java interface or class, de-
pending on its expected implementation complexity. Reusable role models and class models are pack-
aged as individual units.

Specification 5-1 shows the source code of the Java Figure interface.

package org.riehle.diss.Figure;

import java.util.Enumeration;
import java.awt.Graphics;
import java.awt.Point;
import org.riehle.diss.ObjectProperty.*;

/**
A Figure object is a graphical figure object that
can be used in drawing editors. It provides the
following role types:

- Figure.Figure
- FigureHierarchy.Child
- FigureObserver.Subject
- FigureChain.Predecessor
- Graphics.Client
- ObjectProperty.Provider
**/

public interface Figure extends PropertyProvider {
/**
@roletype Figure.Figure
**/
public void draw(Graphics gc);
public void drawOutline(Graphics gc);
public Point getOrigin();
public void setOrigin(Point origin);
public Point getExtent();
public void setExtent(Point extent);
public void place(Point location);
public void move(int dx, int dy);
public void resize(int handle, int dx, int dy);

/**
@roletype FigureHierarchy.Child
**/
public boolean hasParent();
public CompositeFigure getParent();
public boolean maySetParent();
public void setParent(CompositeFigure parent);

92

/**
@roletype FigureObserver.Subject
**/
public boolean hasFigureListener(FigureListener listener);
public void addFigureListener(FigureListener listener);
public void removeFigureListener(FigureListener listener);

/**
@roletype FigureChain.Predecessor
**/
public CompositeFigure getSuccessor();
public boolean maySetSuccessor();
public void setSuccessor(CompositeFigure successor);

/**
@roletype Graphics.Client
@properties free noop
**/

}

Specification 5-1: Definition of the Java Figure interface to represent the Figure class.

A role type that is to be explicit is represented as a Java interface. The use of abstract classes as a rep-
resentation mechanism of a free role type does not make sense, because Java classes are restricted to
single inheritance. The interface should be named after the role type.

Using customary Java naming, Specification 5-2 shows the free role type FigureObserver.Observer.

package org.riehle.diss.Figure;

import java.util.EventListener;

/**
This interface represents the FigureObserver.Observer role type.

A FigureListener is an object that is notified by a Figure object
about state changes of that Figure object.

@roletype FigureObserver.Observer
@properties free
**/

public interface FigureListener extends EventListener {
public void figureChanged(FigureEvent e);
public void figureRemoved(FigureEvent e);
public void figureInvalidated(FigureEvent e);

}

Specification 5-2: Definition of the Java FigureListener interface
to represent the FigureObserver.Observer role type.

A free no-op role type of a class model may be represented as an empty Java interface (or not at all).
For example, the Figure class provides the Graphics.Client role type. This is a free no-op role type of
the Graphics framework. The provision of the role type can be annotated in the class interface as il-
lustrated in Specification 5-3:

public interface Figure extends PropertyProvider {
...

/**
@roletype Graphics.Client
@properties free noop
**/

}

Specification 5-3: Role type Graphics.Client in the definition of the Java Figure interface.

93

Examples of where it makes sense to explicitly represent a free role type without operations are client
role types for object creation as presented in Specification 5-4. The comments in the client interface
describe the ordering criteria imposed on the client of operation invocations on the newly created ob-
ject.

package org.riehle.diss.Figure;

/**
This interface represents the GroupFigureCreation.Client role type.

@roletype GroupFigureCreation.Client
@properties noop
**/

public interface GroupFigureCreationClient {
// After calling a GroupFigure constructor, you may
// add and remove as many Child objects as you wish.
// You must finalize the initialization of a GroupFigure
// with a call to initDone(). After this, you cannot
// add or remove any Child object, unless you call
// reinitialize() to reopen the GroupFigure object.
// Calling reinitialize() will cause the GroupFigure
// to drop all contained Figure objects.

}

Specification 5-4: Definition of the Java GroupFigureCreationClient interface
to represent the GroupFigureCreation.Client role type.

A role type of a reusable role model is represented as a Java interface. The same argument that applies
to a free role type of a class model applies here as well. Specification 5-5 shows the ObjectProp-
erty.Provider role type.

package org.riehle.diss.ObjectProperty;

import java.util.Enumeration;

/**
This interface represents the ObjectProperty.Provider role type.

A Provider provides Object instances as Properties. A Property
has a name. A Client may ask for a property by name. It may set
a Property to the Provider using the Property’s name. It may
request all names of accepted Property types and may test whether
a certain Property type is known and acceptable to the Provider.

@roletype ObjectProperty.Provider
@properties free
**/

public interface PropertyProvider {
public boolean hasProperty(String name);
public boolean acceptsProperty(String name, Object prop);
public Object getProperty(String name);
public Object getDefaultProperty(String name);
public Enumeration getProperties(); // collection of Object

public boolean acceptsPropertyType(String typeName);
public Enumeration getPropertyTypeNames(); // collection of String

public void setProperty(String name, Object prop)
throws InvalidPropertyException;

public void unsetProperty(String name);
}

Specification 5-5: Definition of the Java PropertyProvider interface
to represent the ObjectProperty.Provider role type.

Classes are simpler to represent. They are expressed either as a Java interface or a class. Which variant
to choose depends on the number of implementations of the design-level class [Rie97d, Rie97e,

94

RD99a, RD99b]. In the example, the class Figure is represented as a Java interface, for which different
Java classes exist as different implementations.

In both cases, it is possible to tie in the different role types that a class must provide. If the class is rep-
resented as a Java interface, it inherits from the interfaces that represent (some of) the role types it is to
provide. If the class is represented as a Java class, it simply implements them. In addition, non-
reusable role types are textually directly embedded into the Java interface or the Java class.

Role models that are considered reusable should get their own Java package. The package introduces a
convenient namespace for the role types of the role model. A framework should also get its own pack-
age. It ties in reusable role models by means of import statements. In the example, ObjectProperty is
considered a reusable role model and thus gets a package of its own. The Figure framework also gets
its own package, from which it imports these two other packages.

5.4.4 Extending C++ with role modeling
In contrast to Java, C++ does not offer an explicit interface concept. However, it provides the concept
of pure virtual functions (polymorphic operations without implementation) and multiple inheritance.
Taken together, these concepts can be used to emulate the Java interface concept. This also meets the
intent of the designers of the C++ programming language [Str94].

The Java ObjectProperty interface from above is expressed in C++ as shown in Specification 5-6.

#include "Object.h"
#include "String.h"
#include <vector.h>

/**
This interface represents the ObjectProperty.Provider role type.

A Provider provides Object instances as Properties. A Property
has a name. A Client may ask for a property by name. It may set
a Property to the Provider using the Property’s name. It may
request all names of accepted Property types and may test whether
a certain Property type is known and acceptable to the Provider.

@roletype ObjectProperty.Provider
@properties free
**/

class PropertyProvider : public Object {
public bool hasProperty(string name) =0;
public bool acceptsProperty(string name, Object* prop) =0;
public Object* getProperty(string name) =0;
public Object* getDefaultProperty(string name) =0;
public vector<Object*>::iterator getProperties() =0;

public bool acceptsPropertyType(string typeName) =0;
public vector<string>::iterator getPropertyTypeNames() =0;

public void setProperty(string name, Object* prop)
throw InvalidPropertyException =0;

public void unsetProperty(string name) =0;
};

Specification 5-6: Definition of the C++ PropertyProvider interface
to represent the ObjectProperty.Provider role type.

Using this substitute for Java interfaces, the whole Java discussion also applies to C++. The Java im-
plements relationship becomes a regular inheritance relationship. C++’s inheritance mechanisms al-
lows multiple inheritance, so that there are no constraints on the number of interfaces that might repre-
sent a role type and that might be provided by a class.

95

Packaging in C++ is done using files and name spaces. The namespace keyword lets developers scope
classes with a name space so that references to these classes must be qualified using the name of the
name space.

5.4.5 Extending Smalltalk with role modeling
The representation of the role modeling concepts in Smalltalk differs from the one used for Java and
C++. Smalltalk does not provide interfaces, multiple inheritance, or name spaces. The following dis-
cussion uses a generic Smalltalk dialect and ignores vendor-specific extensions.

In Smalltalk, it is a convention to express abstract methods by implementing them with the statement
self subclassResponsibility. When executed, this statement invokes the subclassResponsibility method
of the object, which will usually bring up the debugger to indicate that a method was executed for
which a subclass failed to provide an implementation.

A class with only abstract methods is an abstract class. It can be used to represent a role type. Specifi-
cation 5-7 describes the role type FigureObserver.Observer in Smalltalk.

"A FigureObserver is an object that is notified by a
Figure object about state changes of that Figure object.

@roletype FigureObserver.Observer
@properties free"

Object subclass: # FigureObserver
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’

"FigureObserver publicMethods"

figureChanged: figureEvent
self subclassResponsibility

figureRemoved: figureEvent
self subclassResponsibility

figureInvalidated: figureEvent
self subclassResponsibility

Specification 5-7: Definition of the abstract FigureObserver class in Smalltalk
to represent the FigureObserver.Observer role type.

A class composes role types. Java and C++ do this using multiple inheritance. Smalltalk does not pro-
vide multiple inheritance, at least not the mainstream Smalltalk implementations VisualWorks and
VisualAge. Smalltalk’s elaborate metalevel architecture makes it possible to introduce multiple in-
heritance without breaking the language. Schäffer presents an in-depth discussion of how to do so
[Sch98]. However, the introduction of multiple inheritance is proprietary and frequently problematic.

As an alternative, developers can use tools to copy method definitions from an abstract class repre-
senting a role type to a regular class [RS95]. Such tools can emulate multiple inheritance, but require
additional maintenance efforts. However, tool support is better than copying methods by hand, which
requires an even higher maintenance effort to keep definitions synchronized.

For structuring a class interface, Smalltalk uses method categories. A method category is a (sub-)set of
methods from the overall set of methods of a class. Each class has a set of method categories. A pro-
grammer assigns a method to a method category. It is customary that a method is assigned to exactly
one method category, but most tools do not enforce this, and it is possible to have a method be an ele-
ment of more than one method category.

96

A method category can be used to group all methods of a particular role type. On a design-level, the
Figure class provides the role types Figure.Figure, FigureHierarchy.Child, FigureObserver.Subject,
Graphics.Client, FigureChain.Predecessor, and ObjectProperty.Provider. On a Smalltalk level, the
Figure class provides the corresponding method categories.

The method category GraphicsClient to represent the free no-op role type Graphics.Client is empty,
because no methods are assigned to it. It is sensible to make a role type without methods explicit, even
if it leads to an empty method category. This is equivalent to annotating the class interface with no-op
role types.

It is a Smalltalk convention to have a method category called “Accessing”. This method category pro-
vides all methods used for simple get and set access to instance variables of an object. From a role
modeling perspective, the Accessing method category is problematic. It does not represent a role type
but rather cuts across the whole set of role types provided by a class. The Accessing method category
provides a good overview of the abstract state of the class, even though it is not guaranteed to give a
complete overview.

It does not make sense to break this long-established convention. However, it would be equally an-
noying, if a method category that represents a role type would be incomplete, because its get and set
methods are assigned to the Accessing method category rather than the role type’s method category. It
is therefore best to keep the methods in both categories, serving both conventions equally well.

Smalltalk does not provide name spaces. Rather, developers use prefixes to tag classes as belonging to
a particular name space. This can be used to emulate name spaces. However, it is fairly impractical to
have a prefix of several words in front of the actual class name, so that name spaces are only used on a
coarse-grained basis.

5.4.6 Extension properties
The following discussion shows how the extension properties asked for in Section 5.2 are realized by
the programming language extensions. It thereby describes the rationale behind the extensions.

• Robustness. All three programming language extensions are robust with respect to being used by
developers who do not know about the role modeling extension. The extensions use only such
features of the programming language that are widely understood.

In the case of Smalltalk, a metalevel extension could introduce new role modeling concepts on top
of the existing language. Such an extension is not robust, because it requires developers to under-
stand the concepts and handle them appropriately. Section 5.1 discusses the pros and cons of this
decision.

• Inconsistency. A program written in any of the three programming languages may be inconsistent
from the point of view of the role modeling extension. However, if it is a proper program, it still
runs without problems. Therefore, developers can mix and match role modeling with traditional
concepts.

• Incompleteness. Source code may be inconsistent from a role modeling perspective and therefore
incomplete as well.

• Tool support. There is no dedicated tool support for role modeling in current mainstream pro-
gramming environments. These environments only support the immediate language features.
Therefore, the programmer must maintain a role modeling perspective when implementing de-
signs.

However, maturing programming environments tend to introduce new tools and concepts that re-
flect the pragmatics of using programming language constructs better than could be derived from
the language definition. we can expect role modeling to provide significant input to these tools.

97

• Bridge to design. Annotations provide sufficient means for bridging back from implementation to
design, both for developers to look up a particular documentation aspect, and for tools for code
generation and round-trip software engineering.

Except for Smalltalk, none of the programming languages provides an extension mechanism that lets
us gracefully introduce new language features. As a consequence, we take a conservative approach
and use basic language concepts only. Except for the area of tool support, all desirable properties are
achieved.

5.5 Summary
This chapter presents the extension of UML, Java, C++, and Smalltalk with the role modeling con-
cepts for framework design. Using these extensions, developers can work in any of these design nota-
tions or programming languages and apply the new role modeling concepts where appropriate. The
extensions are robust and can cope with inconsistency and incompleteness.

By choosing to provide extensions of industry standards rather than introducing a new isolated ap-
proach, Chapter 5 demonstrates that role modeling for framework design is an evolutionary step ahead
in the definition of design methods. It adds to existing methods, but does not replace them. It can be
used without invalidating existing investments.

This chapter is the last theory chapter. The following chapters are case studies that show how role
modeling works in practice.

98

6
Case Study:
The Geo Object
Framework

This chapter presents a first case study: the Geo Object framework. This framework is the root frame-
work of the Geo system, a distributed object system based on an explicit metalevel architecture. The
Object framework comprises the most fundamental classes of a Geo system: Object, MetaObject,
Class, MetaClass, and others. The chapter presents the framework and discusses the experiences of its
development team with designing, learning, and using the framework. While doing so, the team made
explicit use of role modeling and the role–model–based catalog of design patterns. This framework is
of particular interest, because many systems today have such a root framework. The Geo system is
only one example; other examples are Smalltalk and Java in general, and various C++ application
frameworks.

6.1 Case study overview
The Geo system is a distributed object system that has an explicit metalevel architecture. It is organ-
ized as a service architecture and implemented using frameworks. All of the frameworks build on the
Object framework, which is discussed in this chapter.

6.1.1 Project history
The Geo system was developed at Ubilab, UBS AG, during 1997. Its primary goal was to evaluate and
demonstrate novel design concepts for a metalevel architecture that allowed programmers to custom-
ize object behavior on a per-instance basis. However, the metalevel architecture is only a small part of
the system. The largest part are the service frameworks that made Geo a distributed system.

100

The Geo system was part of a project that was jointly run by Kai-Uwe Mätzel and me. The Geo
frameworks were designed and implemented by a team that over time consisted of the following
members: Roger Brudermann, Bruno Essmann, Frank Froese, Patrizia Marsura, Kai-Uwe Mätzel, and
me. In the following, “the team” refers to this team, and “team members” refers to one or several of its
members, depending on the context.

The team cooperated with the GBO project, another UBS IT project. GBO (“Global Business Ob-
jects”) was a much larger project [BGR96a, BGR96b] that had been started in 1996. It aimed at pro-
viding a new distributed object infrastructure for UBS’ worldwide IT operations. GBO was to inte-
grate the many existing heterogeneous systems through means of a metalevel architecture. The goal of
developing the Geo system was to feed back the results from the metalevel architecture into GBO.
However, in course of the UBS/SBC merger development was stopped, and the project eventually was
terminated.

As a consequence, different parts of the Geo system have different maturity. The framework presented
in this chapter is very mature. It has formed the foundation for most other frameworks of the Geo sys-
tem and proved its reliability.

6.1.2 The case study
The Geo Object framework is the root framework from which all other frameworks in the Geo system
inherit. It defines key classes like AnyObject, from which every other class in the system either di-
rectly or indirectly inherits. The Object framework defines the overall structure of the metalevel ar-
chitecture, but also allows for customization so that extensions can introduce their own custom-
tailored versions.

In Geo, every object has a metaobject that can be customized with RequestHandler objects. Each such
request handler manages one particular functional aspect of the execution of a method of the baseob-
ject. The metaobject itself coordinates the overall method execution process. This setup is similar to
the one of CodA [McA95a, McA95b], with the difference that the project team was not interested in
the primitive aspects of an object (a minimal object model), but rather in what an object needs in a
distributed system. So the functional aspects team members were thinking about were logging, secu-
rity, error handling, etc.

The Object framework is based on experiences with similar frameworks and on-going refinement
during the development of the Geo system. Every other framework in the Geo system directly or indi-
rectly has to use it, so everyone who works with the Geo system has to learn it.

In the design and implementation process of Geo, the team members made frequent use of role mod-
eling. While doing so, they also used the design patterns catalog that presents patterns using role mod-
els [Rie97a]. An abbreviated version of this catalog is available as Appendix D.

6.1.3 Chapter structure
The next section describes the Object framework using the framework documentation template from
Chapter 4. The section also shows how the Object framework has been used by one higher-level
framework, the Object Transport Service framework. The final section then describes the team’s expe-
riences with using role modeling in the development of the Geo Object framework and two of its ex-
tensions.

101

6.2 The Geo Object framework
The Geo Object framework provides basic object and class management functionality for a Geo proc-
ess. It defines the classes AnyObject, AnyClass, and MetaClass for objects and classes, MetaObject
and RequestHandler for handling and executing object requests, and ObjectRegistry and ClassMan-
ager for managing objects and classes. These are the most important classes that represent the inter-
face architecture of the framework; the implementation of the framework provides many more classes.

6.2.1 Framework overview
The Object framework is the root framework of all Geo frameworks. It is both a white-box and a
black-box framework. It is a white-box framework, because new classes necessarily inherit from
AnyObject or AnyClass, and it is a black-box framework, because it provides readily usable imple-
mentations of MetaClass, ObjectRegistry, and ClassManager.

The framework provides different categories of functionality.

• Standard AnyObject functionality. AnyObject and AnyClass define what it means to be an object
in a Geo system. This comprises a wide set of functionality, directly offered to clients.

• Request handling functionality. AnyObject, MetaObject, and RequestHandler define how a re-
quest is executed by any instance of (a subclass of) AnyObject.

• Object management functionality. AnyObject, AnyClass, and ObjectRegistry define the minimal
lifecycle management applied to any object in the system.

• Class management functionality. AnyClass, MetaClass, and ClassManager define additional life-
cycle management that is applied to any class object in the system (class objects are instances of
AnyClass).

Subsection 6.2.2 presents the class model of the framework. It comprises a discussion of the classes
and the structural relationships they define for their instances. Subsection 6.2.3 then presents the role
models that define the collaboration of instances of these classes.

6.2.2 Class model
Figure 6-1 shows the seven key classes of the Geo Object framework, together with their structural
relationships.

These seven classes serve the following purposes:

• AnyObject defines functionality provided by every object in a Geo system. The functionality cov-
ered ranges from simple operations that provide an object identifier up to a metaobject protocol
that lets clients request metadata about the object at hand. AnyObject relates to all other classes of
the Object framework. It is the direct or indirect superclass of every class in the system.

• MetaObject is the (super-)class of all metaobject classes in a system. Every instance of AnyObject
has a metaobject. An instance of the MetaObject class defines the configuration and execution of
incoming requests of the baseobject the instance is responsible for. A metaobject handles accept-
ing, queueing, processing, and dispatching of a request. It allows custom-tailoring the runtime be-
havior of its baseobject.

• RequestHandler is the (super-)class of all request handlers. Every metaobject may have several
request handlers associated with it. A metaobject runs any incoming request by its request han-
dlers. A request handler may change or veto a request. A request handler is devoted to a particular

102

request execution concern, for example to logging the request, decrypting it, or authenticating the
originator.

• AnyClass is the (super-)class of all class objects. A class object represents a specific class. Every
instance of AnyObject has a class object. Each class object may have several instances. In con-
trast, to class objects, there is one dedicated metaobject for each baseobject (at least conceptually).
AnyClass defines all the class-level functionality needed by an object. It provides metadata, identi-
fier, stubs, etc.

• ObjectRegistry is the class of the singleton object registry. AnyClass is responsible for creating
and deleting its instances. It manages these objects through the use of the object registry. Objec-
tRegistry focuses solely on providing convenient access to objects using either a unique identifier
or a name that an object has been given.

• MetaClass is the (super-)class of the class object of all class objects. It is a subclass of AnyClass.
The instance creation process of AnyClass is too simple for classes, so MetaClass provides more
elaborate functionality and ensures that all pieces fit together. MetaClass implementations vary
with each system type (front-end browser, application server, and distributed service provider).

• ClassManager is the class of the singleton class manager. The class manager provides a conven-
ient access interface to all classes of a system. A class can be retrieved using its fully qualified
name. If needed, the class manager lazily creates a requested class using the metaclass object.

The following role models detail the role types from the role type sets of these classes.

ObjectRegistry

AnyClass

MetaClass

ClassManager RequestHandler

MetaObject0..*

0..*

1

0..*

1

1

0..*

AnyObject

Figure 6-1: Class model of the Geo Object framework without role models.

6.2.3 Role models
The overall set of role models defined in the Geo Object framework can be partitioned into several
categories:

• AnyObject role models. These role models are binary: they relate a client role type with a role type
provided by AnyObject that provides some basic functionality.

• AnyObject and AnyClass role models. These role models relate AnyObject and AnyClass in-
stances with each other, with the focus on AnyClass as the primary service provider.

103

• Request Handling. These role models deal with executing an incoming request. Represented as an
object, the request is processed by RequestHandler objects before it is dispatched to its target.

• Instance management. These role models deal with maintaining objects as instances of classes in
an object registry. AnyClass and ObjectRegistry work together to maintain the objects.

• Class management. These role models deal with the management of class objects. Management
includes creating and maintaining class objects in a registry. MetaClass and ClassManager do it.

6.2.3.1 Role models of basic object functionality

The first part describes the standard AnyObject functionality, and the second part describes the
AnyObject/AnyClass collaboration. Figure 6-2 shows the role models that are relevant in this context.

AnyObject AnyClass

Class
(ClassObject)

Creator
(ObjectCreation)

Deletor
(ObjectDeletion)

Instance
(ClassObject)

Target
(ObjectDeletion)

Remotable
(RemoteObject)

StubProvider
(RemoteObject)

Identifiable
(Identifying)

IdProvider
(Identifying)

Product
(ObjectCreation)

Readable
(Reader)

Writable
(Writer)

Cloneable
(Cloning)

Comparable
(Comparing)

Key
(DictionaryKey)

Reader
(Reader)

Client
(Reader)

Client
(Writer)

Writer
(Writer)

Client
(Cloning)

Client
(Comparing)

Client
(Identifying)

Client
(DictionaryKey)

Client
(ObjectDeletion)

Client
(ObjectCreation)

Client
(ClassObject)

Client
(RemoteObject)

0..*

Figure 6-2: AnyObject and AnyObject/AnyClass role models.

The following first part describes the AnyObject role models.

• The Reader role model serves to initialize an object from a data-oriented backend. A Client tells
an object, the Readable, to read and subsequently initialize its state from another object, the
Reader. It is an instance of the Serializer pattern. AnyObject provides the Readable role type, and
Client and Reader are free role types.

The Reader role type provides operations to start the reading process for a Readable, as well as
operations for the Readable to request its state. The Readable role type in turn provides operations
to receive the Reader from which to read its state, as well as post-processing operations after the
reading took place. Graphs of objects are read by a recursive descent into the graph, realized by
the Reader and Readable alternatingly calling each other.

• The Writer role model serves to write the state of an object to a data-oriented backend. A Client
tells an object, the Writable, to write its state to another object, the Writer. It is an instance of the
Serializer pattern. AnyObject provides the Writable role type, and Client and Writer are free role
types.

The Writer role type provides operations to start the writing process for a Writable, as well as op-
erations for the Writable to write out its state. The Writable role type provides operations to re-
ceive the Writer it is to write its state to. Graphs of objects are written by a recursive descent into
the graph, realized by the Writer and Writable objects, which alternatingly call each other.

• The Identifying role model makes an object provide a unique identifier (of it). A Client may re-
quest an identifier from an object, the Identifiable. If no identifier is present, the Identifiable re-

104

quests it from its class, the IdProvider. AnyObject provides the Identifiable role type, AnyClass
provides the IdProvider role type, and Client is a free role type.

The Identifiable role type provides operations to get and set the identifier, as well as to compare
two objects for identity with respect to their identifier. The IdProvider role type provides opera-
tions for the Identifiable to request an identifier. Typically, an object does not receive an identifier
right from the start, but only when it is needed, for example, when it is referenced remotely for the
first time.

• The Cloning role model serves to make shallow or deep copies of an object. A Client may ask an
object, the Clonable, for a copy of it. AnyObject provides the Clonable role type, and Client is a
free role type.

• The Comparing role model serves to compare two objects for equality. A Client may ask an ob-
ject, the Comparable, to compare itself with another object. AnyObject provides the Comparable
role type, and Client is a free role type.

• The DictionaryKey role model allows an object to act as a key. A Client can use the object as a
Key. AnyObject provides the Key role type, and Client is a free role type.

The following second part describes combined AnyObject/AnyClass functionality.

• The ObjectCreation role model serves to create a new instance of a class. A Client object asks a
Creator object to create the new Product object. AnyObject provides the Product role type, Any-
Class provides the Creator role type, and Client is a free role type.

The Creator role type defines operations for generically requesting a new instance. The Product
role type defines generic initialization operations. For example, it receives a unique identifier and
a reference to its class object. The ObjectCreation role model does not cover class-specific initiali-
zation, which must be done by a different dedicated role model.

Upon successful creation, the Creator registers the new instance at the ObjectRegistry using the
ObjectRegistry role model.

• The ObjectDeletion role model serves to delete an existing instance of a class. A Client object
asks the Deletor object to delete the Target object. AnyObject provides the Target role type, Any-
Class provides the Deletor role type, and Client is a free role type.

The Deletor role type defines operations by which an existing object can be deleted. The Target
role type defines a protocol for finalizing the object.

Before deletion, the class object unregisters the object from the object registry.

• The ClassObject role model serves to provide metadata about an object. It is an instance of the
Class Object pattern. A Client object can ask the Instance object about its Class object. AnyObject
provides the Instance role type, AnyClass provides the Class role type, and Client is a free role
type.

The Instance object lets Clients request the Class object. The Client object may request metadata
both from the Instance or the Class object. Only the Class object, however, provides the full set of
metadata. For example, the Class object provides metalevel access to the attributes, behavior defi-
nition, and implementation of a given instance.

• The RemoteObject role model serves to make objects remotely referencable. A Client may ask a
class, the StubProvider, to make an object, the Remotable, remotely accessible. AnyObject pro-
vides the Remotable role type, AnyClass provides the StubProvider role type, and Client is a free
role type.

The StubProvider role type provides operations to receive a stub for an object, decouple an object
from the stub, etc. The Remotable role type provides operations to get and set the stub.

105

6.2.3.2 Role models of request handling

The following third part describes how incoming requests are handled and executed. The relevant role
models are shown in Figure 6-3.

AnyObject

MetaObject

AnyClass

RequestHandler

BaseObject
(BaseObject)

MetaObject
(BaseObject)

Manager
(MOConfiguration)

Handler
(RequestHandler)

Client
(RequestDispatch)

Target
(RequestDispatch)

MetaObject
(MetaObject)

Client
(BaseObject)

Client
(MOConfiguration)

Client
(MetaObject)

Client
(RequestHandler)

Client
(BaseObject)

Client
(MOConfiguration)

Handler
(MOConfiguration)

1

1

0..*

Figure 6-3: Classes and role models involved in the request handling process.

• The BaseObject role model defines how a Client may ask an object, the BaseObject, about its
metaobject, the MetaObject. It is an instance of the Metaobject pattern. AnyObject provides the
BaseObject role type, MetaObject provides the MetaObject role type, and AnyClass provides the
Client role type. The Client role type is also a free role type.

The BaseObject role type provides operations to get the metaobject. The MetaObject role type
provides those operations that the baseobject wants to delegate to the metaobject, for example, er-
ror logging.

Conceptually, there is one metaobject for each baseobject, but in practice, metaobjects can be
shared among baseobjects. Therefore, all operations of the metaobject require a reference back to
the baseobject they are to work on or provide services for.

• The MOConfiguration (MetaObjectConfiguration) role model defines how a Client object may
configure a metaobject, the Manager, with a Handler for processing requests. MetaObject provides
the Manager role type, RequestHandler provides the Handler role type, and Client is a free role
type.

The Manager role type provides operations for the Client to insert a Handler at a certain position
in the chain of request handlers along which a request is passed.

• The MetaObject role model defines how a Client may ask a MetaObject to execute a request.
MetaObject provides the MetaObject role type, and Client is a free role type.

The MetaObject role type provides operations to receive an incoming request and to inquire about
the current request processing state.

• The RequestHandler role model defines how a metaobject, the Client, passes a request along a set
of Handler objects. MetaObject provides the Client role type, and RequestHandler provides the
Handler role type.

The Handler role type provides the operations to process a request. A handler might do nothing to
a request, change it, or veto it.

106

• The RequestDispatch role model defines how a metaobject, the Client, hands over a Request ob-
ject to its baseobject, the Target, for dispatch (also known as dynamic invocation interface). The
Target dispatches the request to one of its operations. MetaObject provides the Client role type,
and AnyObject provides the Target role type.

The Target role type provides operations to receive the request object, which it then dispatches to
the correct operation.

6.2.3.3 Role models of object and class management

The fourth part describes the role models for managing objects in an object registry. The fifth part de-
scribes role models for creating and maintaining class objects. Figure 6-4 shows the role models and
the involved classes.

ObjectRegistry AnyObject

AnyClass

MetaClass

ClassManager

Class
(ClassObject)

Creator
(ObjectCreation)

Instance
(ClassObject)

Registry
(ObjectRegistry)

Target
(ObjectDeletion)

Deletor
(ObjectDeletion)

Product
(ObjectCreation)

0..*

0..*

0..*

Creator
(ClassCreation)

Product
(ClassCreation)

Provider
(CMSingleton)

Provider
(MCSingleton)

Singleton
(CMSingleton)

Singleton
(MCSingleton)

singleton
access

singleton
access

Provider
(ORSingleton)

Singleton
(ORSingleton)

singleton
access

Manager
(ClassManager)

Client
(ObjectRegistry)

Client
(ObjectRegistry)

Client
(ObjectRegistry)

Client
(ClassManager)

Client
(CMSingleton)

Client
(ClassCreation)

Client
(ClassCreation)

Client
(MCSingleton)

Client
(ORSingleton)

Client
(ClassObject)

Client
(ObjectCreation)

Client
(ObjectDeletion)

Element
(ObjectRegistry)

Element
(ClassManager)

Figure 6-4: Classes and role models for managing objects and classes
(grayed-out role models are not discussed here).

The following fourth part describes the role models associated with the ObjectRegistry.

• The ObjectRegistry role model serves as a central access point to all objects in the process. It is an
instance of the Object Registry pattern. A Client object may ask the Registry object about any
particular Element object. ObjectRegistry provides the Registry role type, AnyObject provides the
Element role type, and AnyClass provides the Client role type. Client is a free role type.

The Registry role type provides operations to register and unregister Elements using object identi-
fiers and names.

107

Within the framework, AnyClass provides the Client role type. AnyClass objects use it to register
or unregister their instances at the ObjectRegistry.

• The ORSingleton role model (ObjectRegistrySingleton) serves to provide convenient access to the
single ObjectRegistry object. It is an instance of the Singleton pattern. It is shown in Figure 6-4
using the singleton shorthand.

The following fifth part describes the role models for creating and managing classes.

• The ClassCreation role model serves to instantiate new class objects. A Client object may ask the
Creator object to create a new Product object. AnyClass provides the Product, MetaClass provides
the Creator, and ClassManager provides the Client role type. Client is a free role type.

The Creator role type provides convenience operation to instantiate new class objects using the
most common combinations of parameters. Class objects in the Geo metalevel architecture are
configured with a large number of parameters. The Product role type provides initialization opera-
tions to receive these parameters.

Creation of a class object is a special case of creation of a regular object, so the ObjectCreation
role model is used to setup the Object related parts of the new class object. Also, the ObjectRegis-
try role model is used to register the new class object at the ObjectRegistry, using its identifier and
class name.

• The MCSingleton role model (MetaClassSingleton) serves to provide convenient access to the sin-
gle MetaClass object. It is an instance of the Singleton pattern and shown in the figure using the
singleton shorthand.

• The ClassManager role model serves to provide a central access point to all classes of a process.
A Client may ask the Manager for an Element. Class provides the Element role type, ClassMan-
ager provides the Manager role type, and Client is a free role type.

The Manager role type provides operations to register and unregister class objects using their class
name. If a class is not available, the class manager loads it on the fly.

The ClassManager uses the ClassCreation role model and underlying system facilities for on-
demand creating and loading a class that is not currently available in the system.

• The CMSingleton role model (ClassManagerSingleton) serves to provide convenient access to the
single ClassManager object. It is an instance of the Singleton pattern and shown in the figure using
the singleton shorthand.

Most of the role models are free role models. Virtually every framework makes use of the ClassMan-
ager.Client role type to retrieve classes by name. Other role types are taken up by more specialized
frameworks. For example, the system configuration frameworks make use of the ClassCreation.Client
role type, and others.

6.2.4 Built-on classes
The Object framework is a fundamental framework that does not build on any other framework. It
uses several underlying Java APIs, though.

6.2.5 Example extension
If a class wants its instances to make use of system services and to be referenced remotely, it must di-
rectly or indirectly inherit from AnyObject. Therefore, the Object framework forms the foundation of
nearly every other non-trivial class in a system.

108

Object Transport
Service framework

Object
framework

Streaming
framework

OtsStarter OtsFactory

Vroom

Communicator

ObjectTransport
Service

AnyClassAnyObject

AnyReaderAnyWriterStreamingPolicy

BufferWriter BufferReader

Reactor
(OTSReactor)

OTS
(OTS)

Abstraction
(OTSBridge)

Observer
(OTSBObserver)

Writer
(Writer)

Reader
(Reader)

Context
(StreamingPolicy)

Implementor
(OTSBridge)

Subject
(OTSBObserver)

Vroom
(Vroom)

Element
(Writer)

Element
(Reader)

Product
(ObjectCreation)

Creator
(ObjectCreation)

0..*

0..*

Policy
(StreamingPolicy)

BufferWriter
(BufferWriter)

BufferReader
(BufferReader)

Handler
(OTSReactor)

Factory
(OTSFactory)

Provider
(OTSFSingleton)

Product
(OTSFCreation)

Product
(OTSCreation)

Creator
(OTSFCreation)

Creator
(OTSCreation)

object
creation

object
creation

singleton
access

Provider
(OTSSingleton)

Client
(OTSCreation)

Client
(OTSFCreation)

Client
(OTSFSingleton)

Client
(OTSFactory)

Singleton
(OTSSingleton)

singleton
access

Singleton
(OTSSingleton)

Client
(Vroom)

Client
(ObjectCreation)

Client
(Reader)

Client
(Writer)

Client
(BufferWriter)

Client
(BufferReader)

Client
(StreamingPolicy)

Vroom
(OTSBridge)

Client
(OTSSingleton)

Client
(OTS)

Figure 6-5: The OTS framework making use of the Object framework.

Figure 6-5 shows two example frameworks that both extend and build on the Object framework. (This
is a simplified example). Another account of this example has been given in [RBGM99].

109

The two example frameworks that build on the Object framework are the Streaming and the Object
Transport Service framework. An intermediate Service framework that also extends and builds on the
Object framework is ignored.

The Streaming and the Object Transport Service framework are both extensions and use-clients of the
Object framework. They are extensions, because their classes either directly or indirectly inherit from
AnyObject, which is the primary extension-point class of the Object framework. They are use-clients,
because they tie in with the Object framework using several different free role models.

The Streaming framework introduces classes that define and implement the Reader and Writer objects
implied by the Reader and Writer role models. These classes tie in to the Object framework through
the Reader and Writer role models. The Object Transport Service uses such Reader and Writer objects
to marshal and unmarshal an object’s state.

The Object Transport Service (OTS) framework ties in with the Object and Streaming frameworks
using the Reader and Writer role models. It also uses the ObjectCreation role model of the Object
framework. The OTS does not need more role models, because it copies objects across process
boundaries, but does not migrate them (which is the task of the Object Migration Service acting on top
of the OTS).

The Streaming and the OTS framework are straightforward examples of how frameworks build on
each other. The use of free role models lets us precisely specify what is expected of clients. As the ex-
ample shows, this helps clarify framework relationships.

6.3 Experiences and evaluation
During the development of the Geo system, the team used role modeling and the role–model–based
catalog of design patterns to discuss the design of frameworks. The following subsections present and
discuss the team’s experiences with the use of role modeling for framework design.

6.3.1 Statistics of case study
The Geo Object framework provides the data shown in Table 6-1.

Number of classes 7

Number of role models 21

Number of pattern instances 11

Number of role types assigned to classes 41

Ratio of role types per class 5.86

Standard deviation of role types per class 3.80

110

Ratio of role models per class 3.0

Ratio of pattern instances per role model 0.52

Table 6-1: Raw data and computed figures from the Object framework.

The Geo Streaming framework provides the data shown in Table 6-2.

Number of classes 5

Number of role models 3

Number of pattern instances 1

Number of role types assigned to classes 6

Ratio of role types per class 1.2

Standard deviation of role types per class 0.4

Ratio of role models per class 0.6

Ratio of pattern instances per role model 0.33

Table 6-2: Raw data and computed figures from the Streaming framework.

The Geo Object Transport Service framework provides the data shown in Table 6-3.

Number of classes 5

Number of role models 10

Number of pattern instances 8

Number of role types assigned to classes 28

Ratio of role types per class 5.6

Standard deviation of role types per class 5.43

Ratio of role models per class 2.0

Ratio of pattern instances per role model 0.8

Table 6-3: Raw data and computed figures from the Object Transporter framework.

The discussion of the Object framework, the Streaming framework, and the Object Transport Service
framework shows the key interface architecture only and omits classes of lesser importance and helper
classes.

111

6.3.2 Complexity of classes
The Geo system has many complex classes. On the one hand, these are classes like AnyObject and
AnyClass, which are complex due to the non-trivial number of object collaboration tasks their in-
stances get involved in. On the other hand, these are the classes that serve as facades to a subsystem.
Examples of facades are service interfaces like the one of the Object Transport Sservice and those of
its dependent services like the Object Migration Service or the Remote Request Execution Service.

In both cases, the team found that being able to describe these classes using role types eased its work
considerably. During the development of the Geo system, the team made the following observations:

• During design, team members found that role types and role models made defining the new
classes easier than they remembered from earlier non-role–modeling–based experiences.

• Team members who used complex classes like AnyObject that they had not develop themselves
found these classes easier to understand given a role modeling explanation of their behavior.

• Moreover, most of the team members felt that the complex classes were not only easier to under-
stand, but also easier to use.

It is the team’s experience that designing object systems is much like playing with scenarios of col-
laborating objects. The use of role types and role models lets a developer focus on the position of one
object in such collaboration, without having to care about other roles. Later, a developer can care
about the other roles, and carry out the composition of the role types. Of course, in the design process
there is never such a clear-cut step-wise proceeding, but as a mental tool, describing classes using role
types eases framework design significantly.

AnyObject is a prime example of a class where role modeling made it easier for team members to
learn and use it. Some of AnyObject’s functionality is of general interest, while some is not. Describ-
ing each piece of functionality as a role type (in the context of a role model) helped separate the dif-
ferent concerns, and communicate only those concerns of interest to a specific team member.

6.3.3 Complexity of object collaboration
The Geo system has many frameworks with complex object collaborations. For example, the Object
framework is based on many complex collaboration tasks between AnyObject, AnyClass, and others.
Other frameworks have equally complex internal collaborations. Extending and using the Object
framework both requires understanding these object collaboration tasks.

During the development of the Geo system, the team made the following observations:

• In design discussions, the use of role models and design patterns supports the focus on individual
object collaboration tasks. A developer can delay dealing with other tasks without critically loos-
ing touch with the overall design. In fact, a developer can even switch between the collaboration
tasks and work on the larger whole while staying focused on one particular issue.

• Learning and using a framework is facilitated by the clear definition of free role models. Develop-
ers who want to use a service learn about its interface and behavior in terms of role models, with
each of the role models addressing a different issue. Separating these different issues reduces the
complexity of learning the framework and putting it to use.

A general observation of the team was that role modeling achieves a higher degree of separation of
concerns in the design of object collaborations than a traditional approach does, and that this kind of
separation of concerns significantly reduces intellectual load, thereby easing the work task at hand.

The team also found that breaking up an overall collaboration into different role models supports be-
ing precise about the individual object collaboration tasks. In design discussions, thinking in terms of

112

role models and design patterns frequently helped team members derive conclusions about dependen-
cies between classes, the framework, and clients that had initially been missed. Members attribute this
to the separation of concerns achieved by role models and to the reduced intellectual load.

6.3.4 Clarity of requirements put upon use-clients
The Geo system comprises many frameworks. Black-box use of these frameworks is based on the use
of free role types and free role models. The Geo system is implemented in Java, so free role types with
operations are represented as Java interfaces. The other free role types are described in the documen-
tation and as part of the annotations of the class interfaces.

During designing, learning, and using the frameworks, the team made the following observations:

• While designing a framework, explicitly thinking about what a client may see and what not helps
focus on the relevant design issue at hand. This in turn helps reduce the complexity of designing
the client interaction, because one can focus on one pertinent issue at a time. Role modeling in-
creases the awareness of developers that they are defining the client interaction, so they work
twice as thoroughly, because client interactions are more important than internal collaborations.

• While learning a framework, free role models communicate clearly how to use a framework from
the outside. Not only can a developer use role modeling as a thinking tool in design, but also can
he use it to review his design for clarity and preciseness. If a class has operations that do not be-
long to a role type, or if the client interaction is just one big role model, this usually is a good indi-
cation that the design needs further improvement.

• While using a framework, designing and programming in terms of free role types helps developers
focus on what they are doing with the framework. Using a role type that is not a free role type in-
dicates either a problem with the framework or with the developer’s understanding of it. Using a
free role type is helpful in its explicit description of what a developer can do and what he is sup-
posed to do.

The use of free role types and free role models proved to be very helpful in defining the use-client in-
teraction. This is something that would otherwise have stayed implicit. The team’s experiences with
using frameworks whose client interaction were defined in terms of free role models are favorably
with respect to their effectiveness. For the first time team members had an explicit part of the design to
turn to and to learn from how to use the framework.

6.3.5 Reuse of experience
The following two forms of reuse occurred in the development of the Geo system.

• Reuse of experience through design adaptation. In this form of reuse, a team member recalls some
prior experience and adapts it to the current problem at hand.

• Reuse of experience through design patterns. In this form of reuse, a team member recognizes a
common problem and instantiates a design pattern to solve it.

The following two subsections examine the team’s experiences with these two forms of reuse in the
development of the Geo system.

113

6.3.5.1 Reuse of experience through design adaptation

Reuse of experience through design adaptation occurs when designs are similar to designs from prior
experience. Two examples are the design of the Object framework, and the design of the service inter-
faces.

• During the design of the AnyObject and AnyClass classes team members drew heavily on similar
classes they had seen in Java, Smalltalk, and several C++ application frameworks. They all have
root classes Object and Class, and they all serve similar purposes.

• During the design of some of the service interfaces, team members reused their experiences with
earlier service interfaces that have a similar structure. The Object Transport service, the Object
Migration service, and the Remote Request Execution service interface all provide similar kinds of
role types (primary domain functionality, a callback role type, and a Singleton access role type).

Role modeling made this form of reuse easier than team members could imagine possible with a tradi-
tional approach. In all cases, the relevant functionality was represented and understood in the form of
role models. The team’s experience is that a role model represents a precise and convenient design
fragment of possible reuse that is precisely at the right level of granularity.

Team members either decided to adapt a role model from a design fragment of prior experience, or
they decided to drop it. Once a team member had decided to adapt and thereby reuse it, he worked
within the boundaries set up by the role model. Here, role models proved to be excellent design ele-
ments of possible reuse. They are much better suited than classes, which one has to break up into
pieces to arrive at something similar to role models before one can start reusing them.

The use of role models also made team members not forget the client side and therefore helped them
even further to reuse prior experience.

6.3.5.2 Reuse of experience through design patterns

The Geo frameworks exhibit a high design pattern density [RBGM98]. The team made use of design
patterns in many instances, both by using the original class-based design pattern catalog [GHJV95]
and by using the role–model–based version of a design pattern catalog [Rie97a]. This use of design
patterns made the team’s design efforts more effective by allowing team members to communicate
more effectively [BCC+96, Vli98]. This increased productivity and the overall quality of work.

The Object framework as illustrated here has 7 classes and 21 role models. Conservatively counted, of
these 21 role models, 11 are pattern instances. If one counts role models like Cloning, Comparing, or
DictionaryKey as instances of yet undocumented patterns, the pattern/role model ratio increases fur-
ther. The Object Transport Service framework features similar numbers, and so do most other frame-
works.

The clear structure of the frameworks and the preciseness of their role models are a result of the
team’s understanding and use of design patterns. Because such a large percentage of the functionality
of a framework could be described using design patterns, a large part of the framework had a clear
structure and well-defined meaning early on. The remaining functionality became much easier to de-
fine in terms of role models, because there were less holes left and the boundaries of these holes were
much better defined.

Team members worked most of the time using the role–model–based version of the design pattern
catalog. The role model form made composing design patterns much easier than possible with classes.
When using the class-based form, a team member usually had to carry out an intermediate step in
terms of mapping from classes to functionality and responsibilities and then to the concrete situation
where the pattern was to be applied.

114

The use of role–model–based design patterns allowed team members to drop this intermediate step.
The pattern’s role model structure is directly applicable to any concrete design situation, because the
role types from the pattern definition are directly instantiated in the context of the specific situation.

Also, recognizing an applied pattern became easier using the role–model–based version. Mapping
back from the framework is less complicated, because the role model as an instance of a pattern is
right there in the design, while a class-based structure still requires an intermediate interpretation step
of which class is what participant.

6.3.5.3 Conclusion on reuse of experience

During the development of the Geo frameworks, it was the team’s experience that role modeling
makes it easier to reuse prior experience, be it in the form of adapting old designs or applying design
patterns, than it could imagine possible with a traditional class-based approach.

7
Case Study:
The KMU Desktop
Tools Framework

This chapter presents a second case study of role–model–based framework design. It describes the
Tools framework of the KMU Desktop project (KMU = “Kleinere und Mittlere Unternehmen”, a
Swiss-German abbreviation for small and medium-size enterprises). The KMU Desktop project devel-
ops a system to support the corporate customer credit process of UBS AG, a large international bank.
A first version of the Tools framework was designed and implemented using a traditional class-based
approach. After about a year of use, a redesign was carried out using role modeling and the role–
model–based patterns catalog as an aid. The chapter presents both designs as well as the redesign
team’s experiences during the redesign process. Also, the chapter compares the two designs and
analyzes how role modeling helped to reach the much cleaner redesign.

7.1 Case study overview
UBS AG is a large bank, currently (mid 1999) the largest bank in the world with respect to assets un-
der management. The KMU desktop system is an interactive software system that supports the credit
management of UBS for small and medium-size corporate customers. Credit officers use it to deter-
mine whether a credit is to be granted, to assess and control its risk, and as a support of the whole
granting and reviewing process.

7.1.1 Project history
The corporate customer division of UBS has undergone major changes in recent years, and new soft-
ware was to reflect these changes and to help account managers and credit officers work more effec-

116

tively. The KMU Desktop project’s mission was to develop this new software support. The project’s
primary focus was to support credit management of small and medium-size corporate customers of
UBS.

The project’s approach to analysis, design and implementation is based on the Tools and Materials
metaphor [RZ95, RZ96]. Applications are implemented using Smalltalk on Windows-based PC cli-
ents, C++ on Solaris servers, and CORBA as middleware. The overall architecture is a three-tier cli-
ent/server architecture. The design approach is based on frameworks.

7.1.2 The case study
A particularly important framework is the Tools framework. It is used to develop client-side software
tools, which account managers and credit officers use in their daily work. A first version of this
framework was developed in-house and finished in April 1997. The framework contributed signifi-
cantly to an increase in productivity, but it was also difficult to use. Framework users had problems
understanding and properly using it. After about one year of, project management decided to redesign
the framework to overcome the existing problems with using it.

In March 1998, a team of three developers carried out the redesign. This redesign team consisted of
two of the original developers, Gregory Hutchinson and Birgit Rieder, and me. The redesign team first
analyzed the existing framework, determined its functionality and the problems developers had using
it, described this functionality using role models, added new functionality and changed existing one,
and recomposed the pieces to arrive at a new framework design.

In the following, the word “team” refers to the redesign team mentioned above. “Framework devel-
oper” refers to either Gregory Hutchinson or Birgit Rieder, or both. “Framework user”, or user for
short, refers to other developers from the KMU Desktop project that are using the Tools framework to
build software tools.

7.1.3 Chapter structure
First, this chapter presents the original framework. The framework is described using the original
class-based documentation available to framework users. We add to this description what I learned
from my colleagues from the redesign team. This discussion includes the problems framework users
had using the framework.

Then, the chapter describes the new revised framework using role modeling. The framework structure
changed in many important aspects, but still, one can recognize the original framework and its intent.
The role–model–based description makes use of design patterns terminology, based on the catalog of
role model patterns [Rie97a]. An abbreviated form of this catalog is available as Appendix D.

Finally, the experiences of the redesign team with the redesign process and the experiences of users of
the new framework are presented and analyzed.

7.2 The original Tools framework
This section presents the original Tools framework, as described by its developers. The original design
had been carried out using traditional class-based modeling. In addition, Smalltalk method categories

117

had been used to structure the class interfaces. Also, the developers had used design patterns occasion-
ally. However, they had not used role modeling.

7.2.1 Framework overview
The Tools framework is a framework used to build software tools for interactive software systems
based on the Tools and Materials Metaphor [RZ95, RZ96]. It is a white-box framework.

Software system users use tools to change an underlying domain model called the materials (of work).
Examples of tools are form editors. Form editors work on forms, their material. Other examples of
tools are customer browsers, which serve to browse a list of customers, and risk assessment tools,
which serve to determine the risk of a loan (current or applied for by a customer).

7.2.1.1 Software tools

A software tool is built from a hierarchy of tool components. Every tool component represents a spe-
cific part of the overall tool’s functionality. Every tool component provides both a user interface and
the functionality behind it to access and manipulate parts of the underlying domain model. At any one
time, users interact with one tool component from the hierarchy. The tool component carries out user
requests. Such a user request might cause complex control flow within the tool component hierarchy,
possibly involving all components up to the root component of the hierarchy.

A tool component consists of at least two objects: one functional part object (FP object) that repre-
sents the functionality of the tool component, and one or more interaction part objects (IP objects)
that provide the user interface to use the tool component’s functionality. Thus, a tool component does
not manifest itself as a single object, but rather as one or more IP objects with one FP object. When
speaking of a tool component, typically the component’s FP object is meant that represents the com-
ponent.

A software tool is represented to its environment by the FP object of the root tool component, the so-
called root-FP object. The tool component hierarchy may be arbitrarily deep. In practice, it seldom
goes beyond three levels. The root-FP object manages the overall tool. Every tool component is re-
sponsible for managing its subordinate components (sub-components). In the component hierarchy,
every FP object receives two types of information from sub-components. First, an FP object receives
user requests from sub-components that could not be handled. Second, an FP object receives notifica-
tions about state changes from sub-components based on successfully executed user requests. The
overall structure follows the Bureaucracy pattern [Rie98].

As an example, consider a simple NoteBrowser tool. It consists of one root tool component, the Note-
Browser tool component, and two subordinate NoteLister and NoteEditor tool components. The
NoteLister component presents a list of notes to choose from, and the NoteEditor component lets users
edit a note selected in the NoteLister. The object structure of the tool is depicted in Figure 7-1.

The object pair (noteBrowserIP, noteBrowserFP) from Figure 7-1 forms the root tool component, and
the object pairs (noteListerIP, noteListerFP) and (noteEditorIP, noteEditorFP) form the two sub tool
components.

Figure 7-2 depicts the original Tools framework, as taken from the documentation. A number of minor
adjustments were made, mainly to make the design more readable and to correct omissions. Also, the
class names have been translated to English where necessary.

118

NoteEditor
tool component

NoteLister
tool component

NoteBrowser
tool component

nlIp:
NoteListerIP

neIp:
NoteEditorIP

nbip:
NoteBrowserIP

nlFp:
NoteListerFP

neFp:
NoteEditorFP

nbFp:
NoteBrowserFP

Figure 7-1: Example object structure of a simple NoteBrowser tool
(the gray boxes are a visual aid to mark the extent of a tool component).

superFp

description

description

material

environment

dispatcher

fp

ContextIPartSubIPart

SubFPart ContextFPart

Material

superFp

FPart

factories

2

descriptions

0..*

Description

EventDispatcher

ObjectFactory

Environment

IPart

Figure 7-2: The KMU Desktop Tools framework.

119

The framework classes for tool construction comprise the interaction part classes IPart, SubIPart, and
ContextIPart, as well as the functional part classes FPart, SubFPart, and ContextFPart. The framework
context comprises the classes Material, Environment, EventDispatcher, ObjectFactory, and Descrip-
tion.

As discussed, a tool component comprises one FP object (functional part object, FPart instance), and
one or more IP objects (interaction part objects, IPart instances). An FP object must always be an in-
stance of a concrete subclass of FPart, and an IP object must always be an instance of a concrete sub-
class of IPart.

ContextFPart is the superclass of all root-FPart classes, so if an FP object is to be the root object of the
FP object hierarchy, its must be an instance of (a subclass of) ContextFPart. Similarly, a root-IP object
must be an instance of (a subclass of) ContextIPart. Also, an FP object that is an object in the FP hier-
archy, but that is not the root-FP object, must be an instance of (a subclass of) SubFPart. Similarly, an
IP object that is an object in the IP hierarchy, but that is not the root IP object, must be an instance of
(a subclass of) SubIPart.

In the NoteBrowser tool example, NoteBrowserFP and NoteBrowserIP are subclasses of ContextFPart
and ContextIPart, respectively, and NoteListerFP and NoteListerIP, and NoteEditorFP and NoteEdito-
rIP are subclasses of SubFPart and SubIPart respectively.

7.2.1.2 Environment integration

An environment object, the sole instance of the Environment class, manages software tools. The root-
FP object represents a tool; it is an instance of a subclass of ContextFPart. Thus, ContextFPart defines
the interface through which the environment communicates with a tool.

The environment object receives requests for tool creation from a desktop (not shown in a figure). The
request provides a name for the tool (a string), but not the tool nor its class. The environment uses tool
specifications and the object factory to map the name onto a tool class and to instantiate the tool class.
The tool class must be a concrete subclass of ContextFPart. Tool specifications are instances of class
Description, and the object factory is the sole instance of class ObjectFactory.

The process of determining a tool class from a specification is described by the Product Trader pattern
[BR98]. A description object can calculate a key from the parameters it originally received from a cli-
ent (an example of a key is the tool name string). The key identifies the tool class. It is typically
unique. For each description, the object factory determines the corresponding class, either by looking
it up in pre-configured tables, or by walking over the class hierarchy matching each class with the key.

Once the root-FP object has been instantiated, the environment object properly initializes the tool.
First, it repeats the object creation process for the root-IP object. This time, the key is the root-FP class
itself. Using the object factory guarantees that the correct root-IP for the given root-FP is created,
while it need not to hard-coded which IP class matches which FP class. Also, the environment object
provides a new tool with parameters from the desktop, most notably the material the tool is to be used
on (if specified by the user).

More handling is going on behind the scenes, in particular on the desktop and for loading and storing
materials, before tools can handle them. However, this part of the overall application framework does
not add much to the discussion of the Tools framework and is therefore omitted.

7.2.2 Classes and their functionality
The classes of the framework can be categorized as follows:

• FPart hierarchy. These are the FPart, SubFPart, and ContextFPart classes.

120

• IPart hierarchy. These are the IPart, SubIPart, and ContextIPart classes.

• Tools environment. These are the Environment, EventDispatcher, Description, and ObjectFactory
classes.

The following first part describes the FPart class hierarchy.

• FPart is the abstract superclass for all FP objects. It defines the functionality common to all of
them. Specific FP classes must inherit from it. FPart defines the following protocols:

− Event notification. Clients of an FP object can register to be notified about events. A client
registers for specific event types and provides the FP with operation names to call if the event
occurs. By providing different operations for each event type rather than a dedicated callback
operation, no common protocol is needed among observers that are interested in different
event types.

− Request handling. An FP provides operations to receive requests from its sub-FP objects. Re-
quests are instances of a dedicated Request class.

− Sub-FP instantiation. An FP declares operations to instantiate its sub-FP object. These are in-
ternal operations to be implemented by subclasses (inheritance protocol).

− FPart description. An FP class provides a description of its properties. In Smalltalk, this is a
class-level operation. The description provided is an instance of class Description. The de-
scription is used in the instantiation of objects through the object factory (see below).

− IPart instantiation. An FP provides operations to instantiate its IP (there is exactly one IP ob-
ject for an FP object in this Tools framework).

• ContextFPart is the abstract superclass of all root-FP classes. Every tool must define a subclass of
ContextFPart whose instances represent the tool to the environment. ContextFPart inherits from
FPart and adds the following protocols:

− Event dispatcher connection. A root-FP provides operations to connect to the event dis-
patcher. It knows its dispatcher, forwards specific events to it, and receives events from it.

− Environment connection. A root-FP provides operations to connect to its environment. A cli-
ent may ask about the current tool status, for example whether it has been launched success-
fully.

− Material handling. A root-FP provides operations to provide sub-FP objects with the current
material.

• SubFPart is the abstract superclass of any FP class of objects from the FP hierarchy, except for the
root-FP object, which must be an instance of a subclass of ContextFPart. SubFPart is a subclass of
FPart and adds the following protocols:

− Super-FP handling. It provides operations to get and set the super-FP.

The following second part describes the IPart class hierarchy.

• IPart is the abstract superclass of all IP objects. It defines the functionality common to all IP ob-
jects. Every IP class must inherit from it to extend the framework. IPart defines the following
protocols:

− FPart handling. An IP object provides operations to attach itself to an FP. It receives the FP
object and registers with it for the event types it is interested in.

− Sub-IP instantiation. An IP declares operations to instantiate its sub-IPs. These are internal
operations to be implemented by subclasses (inheritance protocol).

121

− IPart description. An IP class provides a description of its properties. In Smalltalk, this is a
class-level operation. The description provided is an instance of class Description. It is used in
the instantiation of IP objects through the object factory (see below).

• ContextIPart is the abstract superclass of all root-IP classes. Every new tool must define a sub-
class of ContextIPart. ContextIPart inherits from IPart and adds the following protocol:

− GUI handling. A root-IP provides operations to retrieve an icon, which represents the tool on
the desktop. It also provides operations to open and close the main window.

• SubIPart is the abstract superclass of any IP class of objects from the IP hierarchy, except for the
root-IP object, which must be an instance of a subclass of ContextIPart. SubIPart is a subclass of
IPart, to which it adds the following protocols:

− Super-IP handling. It provides operations to get and set the super-IP.

Both SubFPart and SubIPart leave open the handling of further embedded sub-parts. This functionality
must be defined and implemented by every sub-part anew, as described by the section on how to use
the framework.

Finally, the following third part describes the environment classes.

• Environment is a concrete class, whose sole instance is the environment object. This object man-
ages all available tools. The Environment class defines the following functionality:

− It starts up new tools based on user input, initializes them, manages, them, and finally shuts
them down.

− It provides access to the event dispatcher and the IP and FP factories (as asked for by root-FP
objects, see below).

• EventDispatcher is a concrete class, whose sole instance serves to inform dependent tools about
state changes. It collects and distributes events it receives from root-FP objects, so that the tools
can update themselves, if a material of relevance to them has changed. The EventDispatcher class
provides the following functionality:

− It provides operations for a root-FP object to register and unregister interest in specific event
types.

− It dispatches events provided by a root-FP to all FP objects that have registered interest into
the event type.

• ObjectFactory is a concrete class whose instances serve to create objects without naming the
classes of the objects. Thus, a class is not named directly, but identified by an instance of class
Description. Such a description might be a simple string, for example a tool name. The Object-
Factory class provides the following functionality:

− It provides an initialization protocol that lets clients define the root class of the hierarchy from
which objects can instantiated.

− It provides a protocol that lets clients create instances of classes defined by a description ob-
ject, and lets them retrieve the full set of classes that match the description.

There may be any number of object factories at runtime. Two dedicated object factories, both of
which are provided by the environment object, are the IP and FP factories. They are used to in-
stantiate the root objects of both the IP and FP object hierarchies of a tool.

• Description is the superclass of object descriptions that can be used by object factories. A descrip-
tion object identifies a set of equivalent classes (typically, there is only one element in the set,
which means that the description unambiguously identifies a specific class). The Description class
provides the following protocols:

122

− It provides an operation to check two description objects for equality and an operation to pro-
vide a key object for use in a dictionary.

− It provides operations to match description objects with each other.

Each subclass provides initialization protocols specific to the class hierarchy the description ob-
jects are to be used for.

The discussion omits the classes Material and MaterialManager, because they do not add much to the
discussion.

7.2.3 How to use the framework
The Tools framework is a white-box framework. Defining concrete subclasses of SubIPart, Context-
IPart, SubFPart, and ContextFPart creates new types of tools. IPart and FPart are usually not sub-
classed directly.

• ContextFPart is the superclass of all root-FP classes. Whenever a new tool is developed, a new
subclass of it must be created. The following inheritance protocols have to be implemented by
every subclass:

− A protocol to instantiate new sub-FP objects.

− A protocol to conveniently access specific sub-FP objects.

− A class-level protocol that provides metadata like the tool name or the default material class.

In addition, for each new root-FP that reuses sub-FP objects (and every non-trivial root-FP does
so), management operations for handling these sub-FP objects must be written. Typically, this in-
cludes operations to add and remove sub-FP objects from a sub-FP collection.

A new tool might solely be built by reusing existing IP and FP classes. More typically, though, new
sub-FP classes need to be introduced. Such a new sub-FP must be a subclass of SubFPart.

• SubFPart is the superclass of all FP classes, which are not root-FP classes. This includes all
classes whose instances play middle-tier and leaf node roles in the FP object hierarchy. When de-
fining a new sub-FP class, no inheritance protocol needs to be implemented.

However, if the new sub-FP class is not a leaf class, but rather a middle-tier node class, it must
provide functionality to manage its sub-FP objects. Typically, this includes operations to add and
remove sub-FP objects from a sub-FP collection. This functionality is redundant with the one pro-
vided by a new ContextFPart subclass (see discussion above on how to extend ContextFPart).

On the interaction side of a tool, a new subclass of ContextIPart needs to be created for each new sub-
class of ContextFPart.

• ContextIPart is the superclass of all root-IP classes. The following inheritance protocol needs to
be implemented by every subclass:

− A protocol of how to react to user interface events like closing the window.

In addition, each new root-IP needs to manage its sub-IP objects, so it defines operations to handle
its sub-IP objects. Typically, this includes operations to add and remove sub-IP objects from a
sub-IP collection.

For each sub-FP class, there needs to be at least on sub-IP class. Such a class must be a subclass of
SubIPart. When defining a new sub-IP class, no inheritance protocols need to be implemented.

For sub-IP objects, which may contain further sub-IP objects, a management protocol of these sub-IP
objects needs to be defined and implemented. This mirrors the situation of the IP/sub-IP relationship.

123

This protocol and its implementation are also redundant with the one of the subclasses of Contex-
tIPart.

7.3 Problems with the original framework
Discussions with users and the developers of the framework lead to the recognition of the following
problems with understanding and using the framework.

On a general level, the problems that form the motivation for this dissertation were present:

• Class interfaces are complex and hard to understand. Users wished they could get into the
framework faster and with less overhead and pain. The developers wished they could reduce their
coaching efforts.

• Object collaboration was not well understood. Different purposes of object collaborations had
been recognized, but only sparsely separated, and tools for making object collaboration tasks ex-
plicit to help communicate them were missing.

• Too tight coupling between tools and environment. The fixed coupling between tools and envi-
ronment classes hid how to use the framework. While less relevant for users, developers wished
they could have a better separation of concerns.

• Too many simple repetitive tasks to be carried out by hand. Developers had to implement lots of
simple and frequently redundant functionality. Most of it could be automated or delegated to the
GUI builder (that had only been put to limited use).

In general, the developers wished they could communicate faster and better how the framework
worked and how users were to use it.

These general problems were complemented by several minor observations on using the framework.

• Creating new subclasses required implementing too many abstract operations. The inheritance
protocols were too broad and put too much of a burden on the users of the framework.

• There was too much code redundancy between new subclasses of Sub- and ContextFPart as well
as Sub- and ContextIPart. Much of the management of sub-FP and sub-IP objects was redundant.

• A general feeling was that the class hierarchy was not as good as it should be. A prime indicator of
this is the aforementioned implementation redundancy.

To overcome these problems, clean up the design, and make the framework more effective, the KMU
Desktop project management decided to redesign the Tools framework. The next sections describe the
redesigned framework. The final section describes the redesign team’s observations from the process.

7.4 The redesigned Tools framework
This subsection describes the new Tools framework after the redesign took place. It uses the frame-
work documentation template from Chapter 4 to document the framework using role modeling.

124

7.4.1 Framework overview
The redesigned Tools framework is a white-box framework that is used to construct tools, just like the
original framework. It extends the KMU Desktop Object framework (not discussed here). In contrast
to the original framework, it has a different class hierarchy, and some functionality, most notably
functionality provided by or close to the Environment class, is moved out into a new framework, the
Environment framework. The Environment framework is described in the next subsection.

Tools still serve the same purposes as in the original Tools framework: users use them to work on their
materials, which are the objects from the underlying domain model. Also, the overall software tool is
to be understood as a hierarchy of logical tool components, each of which is represented by one FP
object. For each FP object, there may be one or more IP objects. Taken together, the FP object and its
IP objects form a tool component.

Generally speaking, the overall runtime architecture of software tools remains the same, but the un-
derlying object-oriented framework changed to make it more easily usable.

Figure 7-3 shows the class model structure of the redesigned Tools framework.

Tools
framework

Object
framework

Environment
framework

Materials
framework

RootIPart

ToolDescriptionIPartDescription

Material

EventDispatcher

FPartIPart

Description

CompositeIPart CompositeFPart

RootFPart

Class

Environment

ObjectFactory

0..* 0..*

0..*

0..*

0..*

0..*

0..n

0..*

0..*

MaterialManager

Figure 7-3: Class model structure of the redesigned Tools framework.

125

The framework consists of two primary class hierarchies, the IPart and the FPart class hierarchy, as
well as additional Description classes and the EventDispatcher class.

An IP object is an instance of (a subclass of) IPart, and an FP object is an instance of (a subclass of)
FPart.

The redesigned framework now employs the class-based version of the Composite design pattern
[GHJV95], so there are subclasses CompositeIPart and CompositeFPart of classes IPart and FPart,
respectively. This is the only major structural change to the framework. Effectively, it is a refactoring
of functionality among the classes rather than the introduction of new functionality.

Any leaf IP or FP object must be an instance of a subclass of IPart or FPart, respectively, but not of
CompositeIPart or CompositeFPart. Any IP or FP object that may contain sub-IPs or sub-FPs must be
an instance of a subclass of CompositeIPart or CompositeFPart. If, in addition, an IP or FP object
serves as the root of the IP or FP object hierarchy, it must be an instance of a subclass of RootIPart or
RootFPart.

The RootIPart and RootFPart classes provide clients with instances of IPartDescription and ToolDe-
scription, respectively. These description classes identify a specific subclass of RootIPart or
RootFPart. They are subclasses of a more generalized Description class, which stems from the Object
framework. A ToolDescription identifies the tool by its root-FP class for a given tool name, and an
IPartDescription identifies the root-IP class for a given root-FP class.

7.4.2 Class model
The Tools framework comprises the IPart, CompositeIPart, and RootIPart classes, the FPart, Compo-
siteFPart, and RootFPart classes, the IPartDescription and the ToolDescription classes, and the Event-
Dispatcher class.

The FPart class hierarchy defines the abstract classes for building the FP objects of a software tool
instance. It is structured according to the class-based version of the Composite pattern. Leaf-FP
classes must inherit from FPart (but not from CompositeFPart), Composite-FP classes that are not
root-FP classes must inherit from CompositeFPart, and Root-FP classes must inherit from RootFPart.

• FPart is the abstract superclass of all FP objects in a tool. It provides role types that define what
clients can do with any kind of FP object. For example, FP objects collaborate with their super-FP
in the FP object hierarchy and they collaborate with their IP objects.

• CompositeFPart is the abstract superclass of all FP objects in a tool that may have sub-FP objects.
It is a subclass of FPart. In addition to the role types inherited from FPart, it provides role types of
role models that create, manage and collaborate with sub-FP objects.

• RootFPart is the abstract superclass of all root-FP objects. In addition to the role types inherited
from CompositeFPart, it provides role types that define how a root-FP object collaborates with its
environment.

The IPart hierarchy provides the abstract classes for IP objects of a tool instance. It is structured is-
morphically to the FPart hierarchy, employing the Composite pattern again. Leaf-IP classes must in-
herit from IPart, composite-IP classes must inherit from CompositeIPart, and root-IP classes must in-
herit from RootIPart.

• IPart is the abstract superclass of all IP classes. It provides role types that define what clients can
do with any kind IP object. This includes the collaboration with its super-IP, as well as the col-
laboration with its FP object.

126

• CompositeIPart is the abstract superclass of all IP objects that may have sub-IP objects. It is a
subclass of IPart, to the role type set of which it adds role types for creating, managing, and col-
laborating with sub-IP objects in the hierarchy.

• RootIPart is the abstract superclass of all root-IP classes. It is a subclass of CompositeIPart, to the
role type set of which it adds role types for collaborating with its FP object.

Software tools are instantiated by creating the root-FP object, which then builds the rest of the tool.
The root-FP object may either be instantiated directly by naming its class, or it may be instantiated
lazily by using a name reserved for the tool (for example, “Customer Browser” or “Risk Assessment
Tool”). The lazy instantiation process uses the Product Trader pattern. This pattern is used twice, for
the root-FP and for the root-IP. The specifications for these classes are subclasses of Description,
which is a class inherited from the Object framework.

• ToolDescription is a concrete subclass of Description. Every concrete root-FP class provides an
instance of ToolDescription that offers a tool-specific key object for use in a dictionary. The key is
calculated from a string that represents the tool name. In this context, the key used to identify an
FP class in the Object Factory.

• IPartDescription is a concrete subclass of Description. Every concrete root-IP class provides an
instance of IPartDescription that offers a root-IP specific key object for use in a dictionary. The
key is an identifier for the FP class the root-IP class can work with (the IP class must match the FP
class). IP root classes are registered under this key in the object factory.

Finally, software tools coordinate each other using a central event dispatcher.

• EventDispatcher is a concrete class that is instantiated as the event dispatcher singleton. Tools use
it to communicate state changes to other tools. The communication is based on a fixed set of gen-
erally known event types, for which tools may register interest, and about whose concrete occur-
rences they are notified.

The root-FP object of each tool can access the event dispatcher at its central location. Each root-FP
registers its interest in particular other tools or their materials, and provides the dispatcher with event
notifications about changes to its own state or its materials.

7.4.3 Free role models
The role models of the framework can be classified into free externally visible role models, and hidden
internal role models. This first part focuses on the free role models, as they are available to black-box
use clients.

The free role models fall into two categories.

• Managing a tool through its FP objects. These are role models that describe how root-FP objects
communicate with their environment.

• Creating a tool using the Product Trader pattern. These role models describe how description
objects are created to instantiate the root-IP and FP object of a tool without naming their classes.

Figure 7-4 shows the class model including all free and all internal role models.

The following role models deal with managing a tool through its FP objects.

• The FPart role model serves to provide functionality that is available from any FP object for any
Client. FPart provides the FPart role type, and Client is a free role type. The FPart role type pro-
vides all needed information about the FP object, for example its name (for resource manage-
ment).

127

Tools
framework

Object
framework

Materials
framework

RootIPart

ToolDescription

IPartDescription

Material

EventDispatcher

MaterialManager

FPartIPart

Description

CompositeIPart CompositeFPart

RootFPart

Client
(FPart)

Client
(FPartHierarchy)

Root
(RootFPart)

Root
(RootIPart)

Predecessor
(FPartChain)

FPart
(FPart)

Subject
(FPartObserver)

Subject
(SubFPObserver)

Observer
(SubFPObserver)

Subject
(SubIPObserver)

Observer
(SubIPObserver)

Observer
(FPartObserver)

Child
(FPartHierarchy)

Child
(IPartHierarchy)

Observer
(RootFPObserver)

Subject
(RootFPObserver)

Material
(Material)

Dispatcher
(EventDispatcher)

Singleton
(EDSingleton)

Provider
(EDSingleton)

Creator
(TDescCreation)

Product
(TDescCreation)

object
creation

Creator
(IPDescCreation)

Product
(IPDescCreation)

object
creation

Description
(Description)

0..*

0..*

0..*

0..*

0..* 0..1

0..1 0..1

0..1

0..1

0..1

0..10..*

0..1 0..1
Successor

(FPartChain)

Provider
(TDescProvider)

Provider
(IPDescProvider)

IPart
(IPart)

0..* FPart
(IPart)

Parent
(FPartHierarchy)

Parent
(IPartHierarchy)

Manager
(MaterialManager)

Element
(MaterialManager)

Client
(IPartHierarchy)

Client
(IPDescProvider)

Client
(IPDescCreation)

Client
(TDescCreation)

Client
(RootFPart)

Client
(TDescProvider)

Client
(RootIPart)

Client
(EventDispatcher)

Client
(EventDispatcher)

Client
(EDSingleton)

Client
(EDSingleton)

Client
(Material)

Client
(Description)

Client
(MaterialManager)

singleton
access

IPDesc
(IPDescProvider)

TDesc
(TDescProvider)

Figure 7-4: Class model of the redesigned Tools framework, including all role models.

128

• The RootFPart role model serves to provide functionality to clients, which is available from any
root-FP object. A Client thereby handles the RootFPart. RootFPart provides the RootFPart role
type, and Client is a free role type.

The RootFPart role type lets clients get and set the main material of the tool, request status infor-
mation about the tool, and start it up or shut it down.

• The RootFPObserver role model serves to let exactly one framework-external object monitor a
root-FP object for state changes. It is an instance of the Observer pattern. RootFPart provides the
Subject role, and Observer is a free role type.

The Subject role type provides operations to register and unregister the Observer object. The Ob-
server object provides operations to receive the state change notifications.

The following role models deal with instantiating a tool. The Description role model is defined in the
Object framework. It is described here to help understand the application of the Product Trader pat-
tern.

• The Description role model serves to match Description objects with each other and to maintain
them in a dictionary. Each Description object identifies a specific object (typically a class). The
role model is an instantiation of the Specification patterns from [Rie96c, EF97]. Description pro-
vides the Description role type, and Client is a free role type.

The Description role type provides operations that return a key that identifies the Description ob-
ject. Two keys received from two different Description objects are equal, if they represent the
same class. In addition, the Description role type provides operations to match two different De-
scription objects and check for substitutability.

Subclasses of Description implement how to compute the key, check for equality, and match two
Description objects. Example subclasses are ToolDescription and IPartDescription.

• The TDescProvider role model (ToolDescriptionProvider) makes a root-FP class object provide a
Description object that unambiguously identifies the class. RootFPart provides the Provider role
type, Description provides the Description role type, and Client is a free role type.

Any concrete subclass of RootFPart instantiates exactly one ToolDescription object. The root-FP
class object returns this Description object when asked for it through the Provider role type. For
the creation of the ToolDescription object, the concrete RootFPart subclass uses the TDescCrea-
tion role model.

• The TDescCreation role model (ToolDescriptionCreation) serves to instantiate a ToolDescription
object with sufficient parameters to identify the object the Description object represents. It is
shown in the figure using the object creation shorthand. ToolDescription provides the class-level
Creator role type and the instance-level Product role type, and Client is a free role type.

The Creator role type offers instantiation operations that take a string. The string represents the
tool name.

This role model is used by the environment of the Tools framework to instantiate a tool using its
name only (rather than a specific class name).

• The IPDescProvider role model (IPartDescriptionProvider) makes a root-IP class object provide a
Description object that unambiguously identifies the class. RootIPart provides the Provider role
type, Description provides the Description role type, and Client is a free role type.

Any concrete subclass of RootIPart instantiates exactly one IPartDescription object. The root-IP
class object returns this Description object when asked for it through the Provider role type. For
the creation of the IPartDescription object, the concrete RootIPart subclass uses the IPDescCrea-
tion role model.

129

• The IPDescCreation role model (IPartDescriptionCreation) serves to instantiate an IPartDescrip-
tion object with sufficient parameters to identify the object the Description object represents. It is
shown in the figure using the object creation shorthand. IPartDescription provides the class-level
Creator role type and the instance-level Product role type, and Client is a free role type.

The Creator role type offers instantiation operations that take the root-FP class the root-IP class
has been designed to work with.

This role model is used by the environment of the Tools framework to instantiate the root-IP ob-
ject for a new tool.

These role models (Description, ToolDescription, TDescProvider, IPartDescription, IPartProvider)
and these classes (Description, ToolDescription, IPartDescription) taken together with the ObjectFac-
tory introduced as part of the Environment framework, form the instantiation of the Product Trader
pattern.

7.4.4 Internal role models
The internal role models structure the communication of framework objects among each other. They
fall into four main categories:

• IPart with FPart communication. These role models describe how the IP objects of a tool collabo-
rate with their respective FP object.

• Managing the FP object hierarchy. These role models describe how the FP object hierarchy is
built and how the FP objects collaborate with each other.

• Managing the IP object hierarchy. These role models describe how the IP object hierarchy is built
and how the IP objects collaborate with each other and with FP objects.

• Maintaining state dependencies between tools. These role models define how root-FP objects
(each representing a specific tool instance) communicate to maintain their state dependencies.

The following first category of role models describes how IP objects collaborate with FP objects.

• The FPart role model serves to provide functionality that is available from any FP object for any
Client. FPart provides the FPart role type, and Client is a free role type. The FPart role type pro-
vides all needed information about the FP object, for example its name (for resource manage-
ment).

• The IPart role model serves to let an FP object manage its IP objects. IP objects can add or re-
move themselves from an FP, and the FP can use the standard functionality of an IP, like showing
or hiding it. IPart provides the IPart role type, and FPart provides the FPart role type.

• The FPartObserver role model serves to make an FP object notify its IP object about state
changes relevant for the handling and user-interface of the tool component. It is an instance of the
Observer pattern. FPart provides the Subject role type, and IPart provides the Observer role type.

• The RootIPart role model serves to let a root-FP object handle the IP object hierarchy as a whole.
It provides operations to startup, show, hide, and shutdown the overall user interface. RootIPart
provides the Root role type, and RootFPart provides the Client role type.

The following second category of role models describes how FP objects collaborate with each other to
build and maintain the FP object hierarchy of a tool.

• The FPartHierarchy role model is used to build and change the FP object hierarchy. It is an in-
stance of the Composite pattern. FPart provides the Child role type, CompositeFPart provides the

130

Parent role type, and Client is a free role type. Typically, the Client role type is picked up by sub-
classes of CompositeFPart from a framework extension.

• The SubFPObserver role model serves to make a sub-FP object notify its parent-FP object about
state changes relevant for the tool functionality and material state. It is an instance of the Observer
pattern. FPart provides the Subject role type, and CompositeFPart provides the Observer role type.

• The FPartChain role model serves send request up the FP object hierarchy until an FP object
knows how to handle it. It is an instance of the Chain of Responsibility pattern. FPart provides the
Predecessor role type, and CompositeFPart provides the Successor role type.

The Successor role type provides a generic operation for receiving Request objects, and a few op-
erations common to all tools that directly reflect a specific request type, for example QuitRequest.

The following third category of role models describes how IP objects collaborate with each other to
build and maintain the IP object hierarchy of a tool, and how they communicate with FP objects.

• The IPartHierarchy role model is used to build and change the IP object hierarchy. It is an in-
stance of the Composite pattern. IPart provides the Child role type, CompositeIPart provides the
Parent role type, and Client is a free role type. Typically, the Client role type is picked up by sub-
classes of CompositeIPart from a framework extension.

• The SubIPObserver role model serves to make a sub-IP object notify its parent-IP object about
state changes relevant for the display of the user interface. It is an instance of the Observer pattern.
IPart provides the Subject role type, and CompositeIPart provides the Observer role type.

Finally, the following fourth category of role models describes how the root-FP objects communicate
to maintain their state dependencies.

• The EventDispatcher role model serves to inform tools about state changes of other tools or mate-
rials they depend on. It is a variant of the Observer pattern. EventDispatcher provides the Dis-
patcher role type, and RootFPart provides the Client role type.

A Client may act both as a source and as a target of event notifications. First, a Client registers it-
self at the Dispatcher, providing its type (tool type) and name (tool instance). Then, it registers
those materials at the Dispatcher, for which it holds ownership. It thereby promises to inform the
Dispatcher about state changes of these materials. Finally, it registers his interest into state
changes of other tools or materials using names or object references to identify them.

At runtime, the Client informs the Dispatcher about relevant state changes. The Dispatcher dis-
patches these event notifications to other Clients that had registered interest in these state changes.

Therefore, the Dispatcher role type provides operations for Clients to register their interest in vari-
ous types of events, as well as operations to receive and dispatch event notifications. The Client
role type in turn provides operations for the Dispatcher to call back on it, that is to receive the
event notifications.

• The EDSingleton role model serves to provide a convenient access point to the system-wide
EventDispatcher singleton. It is shown in the figure using the Singleton shorthand. EventDis-
patcher provides the class-level Provider role type and the instance-level Singleton role type, and
RootFPart provides the Client role type.

7.4.4.1 Built-on classes

The Tools framework builds on several other frameworks. The two most important ones are the Wid-
get framework (CommonWidgets and VisualAge Parts, in this case), and the Materials framework.

131

• For building the user interface, an IP object arranges a set of widgets in a hierarchical fashion.
How this is done, depends on the concrete IP class. However, the IPart class itself holds a refer-
ence to a distinguished root Widget for the part of the user interface the IP is responsible for.

• For handling material objects, a root-FP object maintains a reference to the main material object
the tool is working on. A material manager object maintains such material objects. Figure 7-4 il-
lustrates these relationships (but does not detail them).

The use of these built-on classes takes place with the appropriate role models. It would be tedious and
tiresome to add them to the discussion, so they are omitted.

7.5 The new Environment framework
The old Tools framework has been split up into the redesigned Tools framework and the new Envi-
ronment framework to better separate design and implementation artifacts and ease application pack-
aging. This section describes how parts of the new Environment framework use the Tools framework.

The Environment framework integrates the Tools framework into the larger context of a (desktop) ap-
plication. The Environment framework provides the root objects of a system. These root objects con-
trol the startup and shutdown of the application process, instantiate tools, and connect tools with the
material management and individual materials. The focus of this discussion is on the collaboration of
the Environment framework with the Tools framework only. All issues not relating to this collabora-
tion are omitted.

The focus of the Environment framework is the Environment class, which is the class that provides the
root object the system is started up by. The Environment object creates, manages, and deletes all tools.
Tools are represented by their root objects, which are instances of concrete subclasses of RootFPart.
Currently, tools are single-threaded, which allows for the simplified use of singleton objects.

The environment object uses a system-wide object factory to instantiate a tool. The object factory is
the sole instance of ObjectFactory. From a client, the factory receives a specification for an object,
determines a class that matches the specification, and creates an instance of the class, which it returns.
A class specification is always an instance of a concrete subclass of Description like IPartDescription
or ToolDescription.

Description and ObjectFactory are classes from the Object framework. Their use allows application
developers to configure a process with new tools through configuration data and dynamic class load-
ing, without having to change and recompile the system.

Figure 7-5 shows the design of Environment framework and its use of the Tools framework.

Of the 7 role types provided by the Environment class, 6 are from the Tools framework, where they
are discussed (see Section 7.3). These are the RootFPart, RootFPartObserver, IPDescCreation,
TDescCreation, EventDispatcher, and EDSingleton role models.

In addition, the Environment class provides the free client role type of the Object Factory role model.

• The Object Factory role model serves to let a client abstractly create an object that conforms to a
given specification. It is an instance of the Product Trader pattern [BR98]. ObjectFactory provides
the Factory role type, and Environment provides the Client role type.

The Factory role type provides operations to request a new object that conforms to given specifi-
cation. The specification must be an instance of a concrete subclass of Description.

132

Tools
framework

Environment
framework

Object
framework

IPartDescription

Object

ToolDescription

EnvironmentRootFPart

Description ObjectFactory

EventDispatcher

Root
(RootFPart)

Observer
(RootFPObserver)

Subject
(RootFPObserver)

Factory
(ObjectFactory)

Creator
(TDescCreation)

Product
(TDescCreation)

Description
(Description)

Description
(ObjectFactory)

Key
(DictionaryKey)

object
creation

Creator
(IPDescCreation)

Product
(IPDescCreation)

object
creation

Dispatcher
(EventDispatcher)

Singleton
(EDSingleton)

Provider
(EDSingleton)

Client
(EventDispatcher)

Client
(EDSingleton)

singleton
access

Client
(RootFPart)

Client
(IPDescCreation)

Client
(TDescCreation)

Client
(ObjectFactory)

Client
(Description)

Client
(DictionaryKey)

Figure 7-5: The integration of the Tools framework into an environment.

For its implementation, the Object Factory uses further role models from the Object framework.

• The Description role model (from the Object framework) serves to match specifications with each
other. It is an instance of the Specification pattern [Rie96c, EF97] and part of an instance of the
Product Trader pattern. Description provides the Description role type, and ObjectFactory pro-
vides the Client role type.

• The DictionaryKey role model (from the Object framework) serves to make an object provide
keys (hashcodes) of itself for use in a dictionary (hashtable). It is an instance of a common (un-

133

named) pattern. Object provides the Key role type, and ObjectFactory provides the Client role
type.

There are many more role models, but they do not add much to showing how the Environment frame-
work is using the Tools framework. Thus, they are omitted from this discussion.

7.6 Experiences and evaluation
During the redesign process the redesign team made use of role modeling and the role–model–based
design pattern catalog. The following subsections present the experiences of team members in a
structured way based on the problems motivating this dissertation. I received these experiences and
observations shortly after the redesign process had been finished and after the new framework had
been released to users.

Of primary interest is the quality of the redesigned framework and whether it has overcome the prob-
lems stated earlier in this chapter. This is the case. However, while the redesign team used role mod-
eling for its work, the framework users did not. They only received traditional documentation. The
primary reason for this is that role modeling as presented in this dissertation requires framework users
and developers to have substantial experience in object-orientation (see thesis statement in Chapter 2).

In large projects like the KMU Desktop project, the developer population is diverse, and not everyone
can be expected to be an expert of object-orientation. There are many technical and organizational so-
lutions to the problems strong variations in developer expertise cause for framework-based develop-
ment. Some of those applied in the KMU Desktop project are listed in Section 7.6.6, which also
shortly discusses how the framework kept evolving after the initial redesign.

7.6.1 Statistics of case study
The KMU Desktop Tools framework provides us with the data shown in Table 7-1.

Number of classes 9

Number of role models 17

Number of pattern instances 10

Number of role types assigned to classes 31

Ratio of role types per class 3.44

Standard deviation of role types per class 1.77

Ratio of role models per class 1.89

Ratio of pattern instances per role model 0.59

Table 7-1: Raw data and computed figures from the Tools framework.

The KMU Desktop Object framework provides us with the data shown in Table 7-2.

134

Number of classes 3

Number of role models 3

Number of pattern instances 2

Number of role types assigned to classes 6

Ratio of role types per class 2.0

Standard deviation of role types per class 0.82

Ratio of role models per class 1.0

Ratio of pattern instances per role model 0.67

Table 7-2: Raw data and computed figures from the Object framework.

The KMU Desktop Environment framework provides us with the data shown in Table 7-3.

Number of classes 1

Number of role models 0

Number of pattern instances 0

Number of role types assigned to classes 7

Ratio of role types per class 7.0

Standard deviation of role types per class 0

Ratio of role models per class 0

Ratio of pattern instances per role model N/A.

Table 7-3: Raw data and computed figures from the Environment framework.

The discussion of the frameworks only shows their key interface architecture and omits classes of
lesser importance and helper classes. Also, it does not show any extension. Finally, the Environment
framework is shown only in so far as it relates to the Tools framework.

7.6.2 Complexity of classes
Regarding the complexity of classes, the redesign team made the following observations:

• Designing classes. Team members found that the focus on role types and role models made de-
signing the new classes easier than the original process (as it was remembered).

• Learning classes. Framework users and original developers said that they could more easily un-
derstand the new classes than they were able to understand the original ones.

135

• Using classes. Also, the users of the new framework said that the redesigned framework was eas-
ier to use than the original framework.

The use of Smalltalk method categories helped learning and using classes. The method categories map
directly on role types.

These observations apply to all complex classes. For example, the RootFPart or Environment classes
became easier to define and work with once they were viewed from the point of view of role types.

7.6.3 Complexity of object collaboration
Regarding the complexity of object collaboration, the redesign team made the following observations:

• Designing object collaborations. Team members continuously switched between a class model
structure and an object collaboration view, the later of which was based on role models.

• Learning object collaboration. Users and original developers said that they could more easily un-
derstand how objects collaborated to achieve the overall purpose of the framework.

• Using the framework. Users of the new framework said that the redesigned framework was easier
to use than the original framework, in particular with respect to how the objects interacted.

Smalltalk method categories also supported thinking in terms of collaborations, because the roles of
objects could be distinguished from each other, and method categories of one class had counterparts at
those classes whose instances were part of the different object collaboration tasks.

Again, these observations apply to all complex collaborations between objects. For example, the col-
laboration between an IP and an FP object, and the collaboration between a root-FP object and the en-
vironment object became much easier to define and handle once the different collaboration tasks in-
volved were understood and modeled using role models.

7.6.4 Clarity of requirements put upon use-clients
Regarding the problems of clear expectations on use-clients of the framework, no specific observa-
tions were made. This is primarily due to the fixed embedding of the Tools framework into the Envi-
ronment framework. The lack of further clients prevents the repeated use of free role types, and there-
fore does not suggest anything with respect to their usefulness in defining requirements on use clients.

7.6.5 Reuse of experience through design patterns
Finally, the redesign team observed that both the original and the new framework exhibit a high den-
sity of pattern applications. Hence, it achieved a high degree of reuse of experience.

The Tools framework uses the following patterns: Composite (both role–model–based and class-based
version), Observer (repeatedly), Chain of Responsibility, Product Trader, and Specification. It uses
further undocumented patterns (keys for a dictionary, Class Object). Also, the documentation does not
show several pattern instances, in particular those close to the code.

In the new framework, the team was able to view role models as pattern instances that we had not rec-
ognized as such before.

For example, the team’s analysis of the collaboration between a super-FP and a sub-FP lead to the in-
troduction of the FPartObserver and FPartChain role models, while only one (implicit) role model, an
instance of the Observer pattern, existed in the original framework. The team made this design deci-

136

sion, because the focus on object collaboration tasks made it recognize the two different purposes the
original Observer pattern application was being used for.

Other examples are the same distinction on the IPart class hierarchy side, and the separation of the
different collaboration tasks in the RootFPart interface.

Perhaps the most important example of how role modeling eased reusing design experience is the ap-
plication of the Composite pattern. The original design repeatedly introduced code in subclasses that
reflected the Composite pattern. Once the team recognized this, it decided to change the class model
structure accordingly to better reflect the class-based version of the Composite pattern. Disassembling
the existing class model into its role model pieces, refactoring the class model to match the class-based
version of the pattern, and recomposing it was significantly facilitated through the use of role models.

The use of role modeling made the recognition and application of design experience in the form of
design patterns easier than would have been possible with a traditional class-based approach.

7.6.6 Further evolution of framework
Since the redesign and its subsequent implementation in March 1998 (and the feedback I got at that
time) the framework has kept evolving. As of April 1999, the following changes have been applied to
the framework.

• Simplification of FPart class hierarchy. The classes FPart and CompositeFPart have been merged
to form one FPart class. However, the functionality of the classes has remained the same. In par-
ticular, this one FPart class still represents an instance of the Composite pattern. (See the Com-
posite pattern example in Section 3.3.11 on design patterns in role modeling).

• Simplification of IPart class hierarchy. Similarly, IPart and CompositeIPart have been merged to
form one IPart class. In addition, a generic RootIPart class has been introduced that need not be
subclassed anymore.

• Simplification of ObjectFactory. The Description classes are gone and specifications for classes
like FPart or IPart are handled generically as objects. Strings and class objects now directly serve
as specifications.

• Introduction of support tool. A software tool now supports the creation of new tools, including
both IP and FP classes. The tool frees users from implementing behavior that cannot be captured
as part of the framework but that is repetitive and redundant otherwise.

For the case study, it is important to note that the framework functionality did not change much over
the course of its evolution. The original framework was already close to the redesigned framework in
terms of functionality, and the current version is even closer to the redesigned framework.

What did change is the class structure and the distribution of responsibilities among classes. The
framework evolved towards less but more complex classes whose interfaces are highly structured
through method categories. Most of the method categories represent a specific role type.

The evolution process (disassembling class functionality into pieces and recomposing them to form a
new class structure) represents further evidence that role types and role models are better at capturing
functionality than single classes.

8
Case Study:
The JHotDraw
Framework

This chapter presents the third and last case study of this dissertation: the JHotDraw framework for
building graphical drawing editor applications. JHotDraw has several framework predecessors, most
notably the Smalltalk framework of same name (HotDraw) and ET++. Also, an expert developer
(Erich Gamma), who uses it for teaching purposes, developed JHotDraw. As a consequence, JHot-
Draw is a very mature framework. This chapter presents the framework starting out with a class-based
design as gathered from the documentation. It then adds a role modeling interpretation to the existing
design and thereby shows that role modeling adds crucial information that would otherwise be missed.
The catalog of role model patterns was used in this work. Finally, this chapter consolidates its obser-
vations and relates them to the problems driving this dissertation.

8.1 Case study overview
JHotDraw is an application framework for building graphical drawing editor applications. It is a ma-
ture Java framework that is publicly available. The case study presented in this chapter discusses the
core classes of the framework and shows how role modeling helps in its documentation.

8.1.1 JHotDraw history
Users use drawing editors to visually arrange graphical figure objects on a drawing area. Drawing
editors are a common type of application, found on nearly every computer desktop. However, the type
of figures may significantly vary. Some drawing editors are more like painting applications, allowing
users to draw paintings. Other drawing editors cover a specific domain, so that the figures users ma-

138

nipulate reflect the semantics of the domain. Examples of the later are drawing editors for technical
drawings in specific application domains like architecture or manufacturing.

JHotDraw is an application framework that can be used for developing custom-made drawing editor
applications. Each application is targeted at a specific domain and reflects the domain’s semantics by
providing specific figure types and by observing their relationships and constraints.

JHotDraw was developed by Erich Gamma. The current version, on which this case study is based, is
5.1. It is a mature framework, and it is publicly available (see Appendix E for a pointer). This makes it
an ideal candidate for a case study in a dissertation.

JHotDraw itself is based on a long history of drawing editor frameworks. In particular, JHotDraw is
the Java version of an earlier Smalltalk framework, called HotDraw [Joh92]. Hotdraw is also publicly
available (again, see Appendix E for a pointer). In addition, JHotDraw draws on its developer’s back-
ground with ET++, an early C++ application framework [WGM89, WG95].

Erich Gamma uses JHotDraw for teaching purposes (which is one reason, why it is a well-designed
and implemented framework). The code is annotated (using JavaDoc-style comments). Also, a tutorial
exists, which discusses the major design issues of the framework [BG98].

In the following, we refer to this set of information (source code, code annotations and comments, and
the tutorial) as the JHotDraw documentation. It is not a complete documentation (it is not meant to be
complete). This does not represent a problem, because the case study does not attempt to provide a
complete documentation of JHotDraw either.

8.1.2 The case study
The case study walks through the major design aspects of the JHotDraw framework. It categorizes
them into three parts: a first part on the Figure class hierarchy, a second part on the Drawing and
DrawingView classes, and a third part on the DrawingEditor classes.

Each part is presented in two forms. First, the design is described using the information available from
the existing documentation. Each part starts with the class documentation from JavaDoc and relates it
to the design documentation from the tutorial. This gives a fairly complete picture of the design under
discussion. To make things complete, each part adds information from the source code that is missing
from the documentation.

A second part then uses role modeling to describe the role–model–based class model of the design.
This revised class model is the result of reading the JHotDraw documentation and implementation and
deriving the role models from it. While the first part provides us with a traditional documentation, en-
hanced with pattern annotations, the second part provides us with a role modeling view of the design.

This partitioning lets us compare the role–model–based version of the class model with the original
class model. The evaluation section at the end of the chapter uses this comparison to derive arguments
about the suitability of using role modeling for framework design and documentation.

In the final section, the case study first reports about the observations made during determining the
role–model–based documentation of the class model. These observations are then related to the prob-
lems in framework design that are driving this dissertation.

8.1.3 Chapter structure
The next section presents the JHotDraw framework. It starts with an overview, and then walks through
the three major design parts. The final section presents the observations made during this design
documentation and relates them to the framework design problems stated in Chapter 1 and 2.

139

8.2 The JHotDraw framework
This section describes the JHotDraw application framework for graphical drawing editors. It first
gives an overview of the design, and then splits it up into three parts: one on the Figure class hierar-
chy, one on the Drawing and DrawingView classes, and one on the DrawingEditor and associated
functionality classes.

8.2.1 Design discussion overview
Figure 8-1 shows the class model of the JHotDraw drawing editor framework (as far as discussed in
this case study; this is not a complete model). It lists all classes relevant for the discussion and shows
their structural relationships. This class model stems from the JHotDraw tutorial, so we are following
Kent Beck and Erich Gamma in picking these classes as the most interesting ones for communicating
the JHotDraw (interface) architecture.

ConnectionFigure

Connector

DecoratorFigure

Handle

NullHandle TrackHandle

Locator

0..*

0..*

0..*2

Painter

PointConstrainer

Tool

DrawingEditor

DrawingView

CreationTool SelectionToolHandleTracker

Figure

Drawing

0..*

CompositeFigure

Figure 8-1: The class model of core JHotDraw classes (as chosen for the case study).

The overall design discussion is divided into three parts. The following subsections discuss each part.

• The Figure classes. This part describes the Figure class hierarchy and associated classes. It dis-
cusses the Figure, CompositeFigure, DecoratorFigure, ConnectionFigure, Connector, and Handle
classes.

• The Drawing and DrawingView classes. This part describes the use of Figure objects in the con-
text of a drawing and its display in a drawing view. It discusses the Drawing, DrawingView,
DrawingEditor, and Painter classes.

• The DrawingEditor classes. This part describes the overall drawing editor functionality. It dis-
cusses the DrawingEditor, the Tool, CreationTool, HandleTracker, and SelectionTool classes, and
the Handle, TrackHandle, NullHandle, and Locator classes.

The design discussion uses the following simplification (rules) to shorten the presentation.

• Merging of interface and abstract implementation into one class. Experienced developers factor
the code of an important abstraction into at least two parts: an interface that represents the domain
concept and an abstract implementation that captures most of the common implementation aspects
of the abstraction. The abstract implementation is reused by concrete subclasses [Rie97d, Rie97e].

140

For our design discussions, these code factoring patterns are unimportant. We therefore merge in-
terface and abstract implementation into a single class. A prime example is the JHotDraw inter-
face Figure and its abstract implementation class AbstractFigure; both become a single class Fig-
ure in our design discussion. Other examples are Tool and AbstractTool, and Handle and Ab-
stractHandle.

• Subsuming a large set of similar classes under a much smaller set of representative classes. Fre-
quently, an abstraction has a large set of similar subclasses that vary only in minor aspects. Putting
all these minor variations as classes into a class model clutters up its visual presentation, but does
not add to the discussion. Therefore, we use a small set of placeholder classes to represent the
larger set of classes.

The first example is the use of three classes, DecoratorFigure, CompositeFigure, and Connection-
Figure, to represent the set of all Figure subclasses. A similar example is the use of CreationTool,
SelectionTool, and HandleTracker to represent the set of all Tool subclasses. A related but differ-
ent example is the use of a (fake) placeholder class TrackHandle to represent the different Handle
classes figures use to represent their handles.

These are the same rules that Kent Beck and Erich Gamma applied in their tutorial on JHotDraw (at
least implicitly, as can be derived by comparing the source code with the tutorial figures).

8.2.2 The Figure classes
This first part of the JHotDraw framework design discussion describes the Figure class hierarchy. Fig-
ure is a central abstraction of the drawing editor framework. It represents a graphical figure that users
can work with (arrange them to form the drawing). The discussion comprises the classes Figure, Com-
positeFigure, DecoratorFigure, ConnectionFigure, Connector, Handle, and Drawing. It does not cover
all aspects of these classes, but only those relevant from the perspective of the Figure class hierarchy.

8.2.2.1 Original documentation

Figure 8-2 shows the part of the Figure class hierarchy, as it can be reengineered from the code. The
figure uses plain UML, and therefore presents the structure of the class model only. Unnamed asso-
ciations between classes are associations that are not bound to a field (=Java instance variable) of one
of the involved classes. They are derived from the abstract state defined in interfaces.

The classes in Figure 8-2 have the following definition (as taken from the source code, and edited and
adapted for the case study):

• Figure. “A figure knows its display box and can draw itself. A figure can be composed of several
figures. A figure has a set of handles to manipulate its shape or attributes. A figure has one or
more connectors that define how to locate a connection point. A figure can have an open ended set
of attributes. A string identifies an attribute. [...]”

• CompositeFigure. “A composite figure is a figure that is composed of several figures. It does not
define any layout behavior. It is up to subclasses to arrange the contained figures. [...] A composite
figure lets you treat a composition of figures like a single figure.”

• DecoratorFigure. “A decorator figure is used to decorate other figures with decorations like bor-
ders. DecoratorFigure forwards all the method invocations to its contained figure. Subclasses can
selectively override these methods to extend and filter behavior. [...] DecoratorFigure is based on
the Decorator pattern.”

• ConnectionFigure. “A connection figure connects connector objects provided by figures. A con-
nection figure knows its start and end connector. It uses the connectors to locate its connection

141

points. A connection figure can have multiple segments. It provides operations to split and join
segments. [...] The Strategy pattern is used to encapsulate the algorithm to locate a connection
point. ConnectionFigure is the Context and Connector is the Strategy participant. [...] The Ob-
server pattern is used to track changes of connected figures. A connection figure registers itself as
an observer of the source and target figure.”

• Connector. “A connector knows how to locate a connection point on a figure. A connector knows
its owning figure and can determine either the start or the endpoint of a given connection figure. A
connector has a display box that describes the area of a figure it is responsible for. A connector
can be visible but it does not have to be. [...] A connector is a Strategy used to determine the con-
nections points. [...] Connectors are created by Figure’s factory method connectorAt().”

• Handle. “A handle is used to change a figure by direct manipulation. A figure may have one or
more handles. A handle knows its owning figure, provides its location on the figure, and helps
track changes. [...] A handle adapts the operations to manipulate a figure to a common interface.”

• FigureChangeListener. “A FigureChangeListener object is a listener interested in figure changes.”
(Listener interfaces are a common Java pattern. A Listener interface represents the callback inter-
face for Observer (= Listener) objects of a given type of subject, here Figure objects).

• Drawing. “A drawing is a container for figures. A drawing sends out DrawingChanged events to
DrawingChangeListener objects whenever a part of the drawing’s area was invalidated. [...] The
Observer pattern is used to decouple a drawing from its views and to enable multiple views.”

CompositeFigure
(from standard)

FigureChangeListener
(from framework)

<<Interface>>

AbstractFigure
(from standard)

-fListener

DecoratorFigure
(from standard)

Drawing
(from framework)

<<Interface>>

ConnectionFigure
(from framework)

<<Interface>>

Connector
(from framework)

<<Interface>>

22

AbstractHandle
(from standard)

Handle
(from framework)

<<Interface>>
Figure

(from framework)

<<Interface>>

#fComponent

0..*

-fOwner

1..*1..*

0..*

Figure 8-2: Structure of the class model of part of the JHotDraw Figure class hierarchy.

The JHotDraw tutorial provides further information about the collaborative behavior of instances of
these classes. It uses design patterns to illustrate it. Figure 8-3 shows the abbreviated and annotated
design, as taken from the tutorial.

142

In this figure, each class is associated with a set of light-blue annotations that name the participant
class of a design pattern as defined in the design patterns book [GHJV95]. We have added a few an-
notations over the original diagrams from the tutorial to make Client and other participants explicit
that seem important but were missing.

ConnectionFigure

Connector

DecoratorFigure

Handle
0..*

0..*2

Figure

Drawing

0..*

CompositeFigure

Decorator: Decorator

Decorator: Component

Strategy: Strategy-3

Strategy: Context-3

Adapter: Adaptee

Observer: Subject-2 Adapter: Adapter

Observer: Observer-2

Observer: Observer-2 Observer: Observer-2Observer: Observer-2

Composite: Composite

Composite: Component

Figure 8-3: Use of design patterns in the Figure class hierarchy.

Figure 8-3 shows the use of the Observer, Adapter, Composite, Decorator, and Strategy design pattern.
All of them where mentioned in the class definitions or could be derived from it.

8.2.2.2 Role model documentation

The design patterns mentioned in the class definitions above already illustrate some of the collabora-
tive behavior of instances of these classes. Next to this information, the class definitions point to the
use of the following patterns (which were omitted from the pattern-annotated class model above):

• Property List. A figure provides a generic set of properties, accessible using strings as their names.

• Factory Method. A figure creates connector and handle objects on demand.

• Observer. A connection figure observes its start and end connection point.

• Manager. A drawing manages several figures as its elements.

Reading the code suggests further role models:

• Domain functionality. All classes provide domain functionality not captured by any pattern.

These pattern instantiations and non-pattern role models are displayed in Figure 8-4. This figure shows
the full class model behind the discussed design.

The following paragraphs describe the role models from the class model of Figure 8-4. The first part
describes all role models that directly relate clients with the Figure class.

• The Figure role model lets a Client make use of a Figure object. The Figure class provides the
Figure role type, and the Drawing and Handle classes provide the Client role type.

• The FigureAttribute role model lets a client get and set any kind of attribute object to a figure ob-
ject. It is an instance of the Property List pattern. The Client gets or sets Attribute objects to the
Provider object. The Figure class provides the Provider role type. The Object class provides the
no-operation Attribute role type. Client is a free role type.

143

• The FigureObserver role model lets Observer objects (Java Listeners) observe any figure Subject
object. It is an instance of the Observer pattern. The Figure class provides the Subject role type
and the classes ConnectionFigure, CompositeFigure, DecoratorFigure, and Drawing provide the
free Observer role type.

CompositeFigure

Drawing

DecoratorFigure

FigureConnector Handle

Object

ConnectionFigure

Subject
(FigureObserver)

Observer
(FigureObserver)

Observer
(FigureObserver)

Observer
(FigureObserver)

Observer
(FigureObserver)

Observer
(FigureObserver)

Core
(FigureDecorator)

Decorator
(FigureDecorator)

Child
(FigureHierarchy)

Product
(ConnCreation)

Connector
(Connector)

Product
(HandleCreation)

Strategy
(ConnStrategy)

Observer
(ConnObserver)

Handle
(Handle)

Handle
(FigureAdapter)

Adaptee
(FigureAdapter)

Creator
(HandleCreation)

Creator
(ConnCreation)

0..*
2

2

0..*

0..*

Parent
(FigureHierarchy)

Subject
(DrawingObserver)

Container
(FigureContainer)

Observer
(DrawingObserver)

0..*

0..*

Figure
(Figure)

Connection
(ConnectionFigure)

Provider
(FigureAttribute)

Drawing
(Drawing)

Composite
(CompositeFigure)

Client
(ConnStrategy)

Client
(ConnectionFigure)

Client
(CompositeFigure)

Client
(FigureAttribute)

Client
(FigureDecorator)

Client
(FigureHierarchy)

Attribute
(FigureAttribute)

Client
(FigureAdapter)

Client
(Handle)

Client
(Figure)

Client
(HandleCreation)

Client
(Figure)

Client
(Drawing)

Client
(FigureContainer)

Element
(FigureContainer)

Client
(ConnCreation)

Client
(Connector)

Figure 8-4: Role–model–enhanced class model of Figure class hierarchy.

The second part describes all role models that relate the Figure class with its subclasses.

• The FigureDecorator role model lets a client decorate any figure with another figure. It is an in-
stance of the Decorator pattern. A Client object sets the Core object a decorating Decorator object.
The Figure class provides the Core role type and the DecoratorFigure class provides the Decorator
role type. Client is a free role type.

• The CompositeFigure role model lets a Client make use of a Composite figure object. The Com-
positeFigure class provides the Composite role type. Client is a free role type.

144

• The FigureHierarchy role model lets a Client configure a composite Parent figure with Child fig-
ure objects. It is an instance of the Composite pattern. The Figure class provides the Child role
type and the CompositeFigure class provides the Parent role type. Client is a free role type.

• The ConnectionFigure role model lets a Client make use of a Connection figure object. The Con-
nectionFigure class provides the Connection role type. Client is a free role type.

• The Connector role model lets a Client make use of Connector objects. The Connector class pro-
vides the Connector role type. Client is a free role type.

• The ConnectorCreation (ConnCreation in Figure 8-4) role model lets a client request connector
objects from a figure object. It is an instance of the Factory Method pattern. The Client object re-
quests a new Product object from the Creator object. The Figure class provides the Creator role
type and the Connector class provides the Product role type. Client is a free role type.

• The ConnectorStrategy (ConnStrategy in Figure 8-4) role model lets a client configure a connec-
tion figure with connector objects. It is an instance of the Strategy pattern. The Client configures
the Context object with Strategy objects. The Context delegates the computation of a connection
point to a Strategy. The ConnectionFigure class provides the Context role type and the Connector
class provides the Strategy role type. Client is a free role type.

The third part describes how the Drawing class relates to the Figure class.

• The Drawing role model lets a Client make use of a Drawing object. The Drawing class provides
the Drawing role type. Client is a free role type.

• The DrawingObserver role model lets observer objects register at and be notified about changes
by a drawing. It is an instance of the Observer pattern. The Observer object observes the Subject
object. The DrawingView class provides the Observer role type and the Drawing class provides
the Subject role type.

• The FigureContainer role model lets clients add, find, and remove figure objects from a drawing
object. It is an instance of the Manager pattern. The Container manages its Elements and provides
them to Clients. The Drawing class provides the Manager role type and the Figure class provides
the opaque Element role type, and the classes DrawingView and SelectionTool provide the Client
role type.

Finally, this last part describes how the Handle class relates to the Figure class.

• The Handle role model lets a Client make use of a Handle object. The Handle class provides the
Handle role type. Client is a free role type.

• The HandleCreation role model lets a client request handle objects from a figure object. It is an
instance of the Factory Method pattern. The Figure class provides the Creator role type and the
Handle class provides the Product role type. Client is a free role type.

• The FigureAdapter role model lets a handle object adapt its owning figure object to client re-
quests. It is an instance of the Adapter pattern. The Handle class provides the Handle role type,
Figure class provides the Adaptee role type, and the HandleTracker class provides the Client role
type.

Of these 16 role models, 10 are pattern instances.

8.2.3 The Drawing and DrawingView classes
This second part of the JHotDraw framework design discussion describes the Drawing, DrawingView,
and related classes. A drawing is a set of figures, displayed in a drawing view. Users manipulate the

145

figures through the drawing view. The discusses the classes Figure, Drawing, DrawingView, Tool,
Painter, PointConstrainer, and DrawingEditor.

8.2.3.1 Original documentation

Figure 8-5 shows the Drawing, DrawingView, and related classes. The figure uses plain UML and
therefore presents the structure of the class model only. Again, unnamed associations and aggregations
have been derived from the abstract state definitions in the interfaces of the involved classes.

DrawingChangeListener
(from framework)

<<Interface>>
FigureChangeListener

(from framework)

<<Interface>>

StandardDrawing
(from standard)

StandardDrawingView
(from standard)

Figure
(from framework)

<<Interface>>

Painter
(from framework)

<<Interface>>

-fUpdateStrategy

PointConstrainer
(from framework)

<<Interface>>

-fConstrainer

Drawing
(from framework)

<<Interface>>

-fDrawing

0..*0..*

DrawingEditor
(from framework)

<<Interface>>

-fEditor

Tool
(from framework)

<<Interface>>

0..*0..*

DrawingView
(from framework)

<<Interface>>

Figure 8-5: Structure of the class model of part of the Drawing and DrawingView classes.

The classes in Figure 8-5 have the following definition (as taken from the source code, and edited and
adapted for the case study):

• Figure, FigureChangeListener, Drawing. See definition in Section 8.2.2.

• DrawingChangeListener. “A DrawingChangeListener is a listener of Drawing instance changes.”

• DrawingView. “A drawing view renders a drawing and listens to its changes. It receives user input
and delegates it to the current tool. [...] A drawing view observes a drawing for changes via the
DrawingChangeListener interface. [...] A drawing view plays the Context role in the State pattern.
Tool is the State. [...] DrawingView is the Context in the Strategy pattern with regard to the Pain-
ter. [...] DrawingView is also the Context for the PointConstrainer.”

• Painter. “A painter encapsulates an algorithm to render something in a drawing view. A drawing
view plays the Context role of the Strategy pattern, and the painter plays the Strategy role.”

146

• PointConstrainer. “A point constrainer constrains a point. It can be used to implement different
kinds of grids. [...] DrawingView is the Context, and PointConstrainer is the Strategy participant.”

• DrawingEditor. “A drawing editor coordinates the different objects that participate in a drawing
editor. [...] A drawing editor manages possibly several drawing views. DrawingEditor is a Media-
tor that decouples several participants.” (Participant classes are Tool and DrawingView).

• Tool. “A tool defines a mode of a drawing view. All input events targeted to the drawing view are
forwarded to its current tool. When it is done with an interaction, a tool informs its editor by call-
ing the editor’s toolDone() method. A tool is created once and reused. It is initialized/deinitialized
with activate()/deactivate(). [...] Tool plays the role of the State. It encapsulates all state specific
behavior. A drawing view plays the Context role of the State pattern.

The JHotDraw tutorial provides further information. Figure 8-6 shows the abbreviated and annotated
design, as taken from the tutorial.

0..*

Painter

DrawingEditor

DrawingView

FigureDrawing

0..*
Tool

PointConstrainer

Strategy: Strategy-1 Observer: Observer-1

Strategy: Context-1

State: Context-1

Observer: Subject-2Observer: Subject-1

Observer: Observer-2

Factory Method:
Product

State: State-1

Factory Method:
ClientStrategy: Context-4Strategy: Strategy-4

Figure 8-6: Use of design patterns for the Drawing and DrawingView classes.

Figure 8-6 shows the use of the Observer (repeatedly), Strategy (repeatedly), State, and Factory
Method design patterns. Again, most of it could be derived straight from the class documentation.
Please note that we added the Factory Method Client participant (to class DrawingEditor) over the
original documentation. Most patterns are about collaborative behavior of objects, and the Client is
one important participant in such a collaboration.

8.2.3.2 Role model documentation

Next to pattern information from the tutorial, the class definitions point to the use of the following
patterns:

• Mediator. A drawing editor acts as a mediator for the drawing view, drawing, and tool colleagues.

Reading the code suggests further role models:

• Domain functionality. All classes provide domain functionality not captured by any pattern.

Figure 8-7 shows these pattern instances as role models together with the non-pattern role models of
the domain functionality. This figure shows the full class model behind the discussed part of the de-
sign. All role models that have been introduced in the previous subsection are visually grayed-out in
the figure and not discussed further.

147

Drawing Figure

DrawingViewPainter

ToolDrawingEditor

PointConstrainer

0..*

0..*

0..*

Strategy
(PointConstrainer)

Context
(PointConstrainer)

Strategy
(Painter)

Context
(Painter)

Editor
(EditorMediator)

View
(DrawingView)

View
(EditorMediator)

Client
(ToolAccess)

Manager
(ToolAccess)

Creator
(ToolCreation)

Product
(ToolCreation)

Context
(ToolState)

State
(ToolState)

Tool
(EditorMediator)

Tool
(Tool)

Subject
(DrawingObserver)

Container
(FigureContainer)

Observer
(DrawingObserver)

Drawing
(Drawing)

Figure
(Figure)

Subject
(FigureObserver)

Observer
(FigureObserver)

Element
(ToolAccess)

Client
(PointConstrainer)

Client
(Drawing)

Client
(FigureContainer)

Element
(FigureContainer)

Client
(Figure)

Client
(DrawingView)

Client
(Tool)

Client
(Painter)

Client
(ToolCreation)

Figure 8-7: Class model of Drawing and DrawingView classes enhanced with role models.

The following paragraphs describe the role models from Figure 8-7 that have not been defined before
(for the others, see Section 8.2.2).

The following first part describes all role models that focus on the DrawingView class.

• The DrawingView role model lets a Client make use of a drawing View object. The DrawingView
class provides the View role type. Client is a free role type.

• The Painter role model lets a drawing view delegate the view update to a painter strategy, which
calls back on the view to draw it. It is an instance of the Strategy pattern. The Painter class pro-
vides the Strategy role type, the DrawingView class provides the Context role type, and the
DrawingEditor provides the Client role type.

• The PointConstrainer role model lets a drawing view delegate the computation of a grid to a con-
strainer object. It is an instance of the Strategy pattern. The PointConstrainer class provides the
Strategy role type and the DrawingView class provides the Context role type. Client is a free role
type.

148

SelectionTool
(f rom standard)

HandleTracker

(f rom standard)

CreationTool
(f rom standard)

AbstractTool
(f rom standard)

DrawingEditor
(f rom f ramework)

<<Interface>>

Drawing
(f rom f ramework)

<<Interface>>

Tool
(f rom f ramework)

<<Interface>>

0..*0..*

DrawingView
(f rom f ramework)

<<Interface>>

#fView

AbstractHandle
(f rom standard)

NorthHandle
(f rom standard)

NorthWestHandle
(f rom standard)

Handle
(f rom f ramework)

<<Interface>>

-fAnchorHandle

Figure
(f rom f ramework)

<<Interface>>

-fCreatedFigure

-fPrototype

0..*

-fOwner

1..*1..*

LocatorHandle
(f rom standard)

NullHandle
(f rom standard)

Locator
(f rom f ramework)

<<Interface>>-fLocator

#fLocator

0..*

Figure 8-8: Structure of the class model of part of the DrawingEditor classes.

The second part describes all role models that focus on the DrawingEditor class.

149

• The EditorMediator role model decouples drawing views from the drawing and the current tool
through an intermediate editor object. It is an instance of the Mediator pattern. The Editor is the
mediator, and DrawingView and Tool objects are the colleagues. The DrawingEditor class pro-
vides the Editor role type, the DrawingView class provides the View role type, and the Tool class
provides the Tool role type.

• The ToolAccess role model lets a client request the current tool from the editor. It is an instance of
the Manager pattern. A Client object asks the Manager object to return a specific Element object,
here the currently active Tool object. The Tool class provides the opaque Element role type, the
DrawingEditor class provides the Manager role type, and the DrawingView class provides the Cli-
ent role type.

• The ToolCreation role model lets the drawing editor create a tool object. It is an instance of the
Factory Method pattern. The DrawingEditor class provides the Client and Creator role type and
the Tool class provides the Product role type.

The third part describes all role models that focus on the Tool class.

• The Tool role model lets a client make use of a tool object. The Tool class provides the Tool role
type and the DrawingEditor class provides the Client role type.

• The ToolState role model lets a client delegate detailed input handling to a tool object. It is an in-
stance of the State pattern. The client object acts as the Context to the tool object that acts as the
State. The Tool class provides the State role type and the DrawingView and SelectionTool classes
provide the Context role type.

Of these 8 role models, 6 are pattern instances, cast as role models.

8.2.4 The DrawingEditor classes
This third part of the JHotDraw framework discussion describes the DrawingEditor and related
classes. The drawing editor is the coordinating object that creates all command and tool objects.
Drawing views manipulate figures of a drawing using these tool objects. During this direct manipula-
tion, tools make use of handles.

8.2.4.1 Original documentation

Figure 8-8 shows the class model of the DrawingEditor class and its related Tool and Handle classes.
The figure uses plain UML, and therefore presents only the structure of the class model. Again, un-
named associations and aggregations have been derived from the abstract state definitions in the inter-
faces of the involved classes.

The classes in Figure 8-8 have the following definition (as taken from the source code, and edited and
adapted for the case study):

• Figure, Drawing, DrawingView, DrawingEditor, Tool. See definitions in Section 8.2.2 and 8.2.3.

• CreationTool. “A creation tool is a tool that is used to create new figures. The figure to be created
is specified by a prototype. [...] A creation tool creates new figures by cloning a prototype.”

• HandleTracker. “A handle tracker is a tool that implements interactions with the handles of a fig-
ure.”

• SelectionTool. “A selection tool is a tool that is used to select and manipulate figures. A selection
tool is in one of three states: background selection, figure selection, or handle manipulation. Dif-
ferent child tools handle the different states. [...] SelectionTool is the Context and a child tool is

150

the State participant of the State pattern. A selection tool delegates state specific behavior to its
current child tool.”

• Handle. “A handle is used to change a figure by direct manipulation. A handle knows its owning
figure and provides methods to locate the handle on the figure and to track changes. [...] A handle
adapts the operations to manipulate a figure to the common Handle interface. [...]”

• TrackHandle. TrackHandle is a (fake) placeholder class that represents any of the NorthHandle,
NorthEastHandle, EastHandle, etc. classes. These classes represent the traditional handles of a
rectangular figure.

• NullHandle. “A null handle is a handle that does not change the owned figure. Its only purpose is
to show that a figure is selected. [...] A null handle lets you treat handles that do not do anything in
the same way as other handles.”

• LocatorHandle. “A locator handle is a handle that delegates the location requests to a locator ob-
ject.”

• Locator. “A locator is used to locate a position on a figure. [...] Locators encapsulate a strategy to
locate a handle on a figure.”

The design patterns mentioned in the class definitions above illustrate some of the collaborative be-
havior of instances of these classes. The JHotDraw tutorial provides further information. Figure 8-9
shows the abbreviated and annotated design, as taken from the tutorial.

Handle

NullHandle TrackHandle

Locator

0..*

0..*

Tool

DrawingEditor

DrawingView

CreationTool SelectionToolHandleTracker

Figure

Drawing

0..*

Observer: Observer-1

Prototype: Client

Factory Method:
Product

State: State-1

Factory Method:
Client

State: Context-2State: State-2

Adapter: Adaptee

State: Context-1

Observer: Subject-2

Prototype: Prototype

Strategy: Strategy-2

Null Object: Null Object

Adapter: Adapter

Strategy: Context--2

Observer: Subject-1

Observer: Observer-2

Figure 8-9: Use of design patterns for the DrawingEditor classes.

As mentioned earlier, to simplify the discussion, the Handle and LocatorHandle classes are merged to
form a single Handle class. With it, Handle becomes the Strategy context for Locator objects.

This design now shows the use of the Observer (repeatedly), Strategy (repeatedly), State (repeatedly),
Adapter, Prototype, Factory Method, and Null Object pattern.

151

Figure Handle

CreationTool HandleTracker

SelectionTool

Locator

Drawing

NullHandleTrackHandle

DrawingView

DrawingEditor Tool

LocatorHandle

Context
(ToolState)

0..*

View
(DrawingView)

Manager
(ToolAccess)

Creator
(ToolCreation)

Product
(ToolCreation)

Context
(ToolState)

State
(ToolState)

Tool
(EditorMediator)

Tool
(Tool)

0..*

Subject
(DrawingObserver)

View
(EditorMediator)

Observer
(DrawingObserver)

Editor
(EditorMediator)

Drawing
(Drawing)

Creator
(HandleCreation)

Creator
(LocatorCreation)

Product
(HandleCreation)

Context
(LocatorStrategy)

Strategy
(LocatorStrategy)

Product
(LocatorCreation)

Handle
(FigureAdapter)

Adaptee
(FigureAdapter)

Handle
(Handle)

Prototype
(FigurePrototype)

Subject
(FigureObserver)

Observer
(FigureObserver)

Creator
(TrackerCreation)

Product
(TrackerCreation)

Figure
(Figure)

0..*
Container

(FigureContainer)

Client
(ToolCreation)

Client
(DrawingView)

Client
(ToolAccess)

Client
(Drawing)

Client
(FigureContainer)

Client
(Figure)

Element
(FigureContainer)

Client
(LocatorCreation)

Client
(Figure)

Client
(HandleCreation)

Client
(Handle)

Client
(FigureAdapter)

Client
(FigurePrototype)

Client
(TrackerCreation)

Client
(FigureContainer)

Element
(ToolAccess)

Client
(Tool)

Figure 8-10: Role–model–enhanced class model of DrawingEditor classes.

152

8.2.4.2 Role model documentation

Next to pattern information from the tutorial, the class definitions point to the use of the following
patterns:

• Factory Method. A figure creates handles with locator objects. A selection tool creates handle
trackers.

Reading the code suggests further role models:

• Domain functionality. All classes provide dedicated domain functionality not captured by any
pattern.

Figure 8-10 shows these pattern instantiations as role models and adds non-pattern role models that
represent the domain functionality. The figure shows the full class model behind the classes selected
for this part of the discussion.

The following paragraphs describe the role models of Figure 8-10 that have not yet been defined and
discussed (for the other role models, see Section 8.2.2 and 8.2.3).

• The TrackerCreation role model lets a selection tool create a new handle tracker object for its own
use. It is an instance of the Factory Method pattern. The SelectionTool class provides the Client
and Creator role types and the HandleTracker class provides the Product role type.

• The FigurePrototype role model lets a Client create a new object by cloning the Prototype. It is an
instance of the Prototype pattern. The Figure class provides the Prototype role type and the Crea-
tionTool class provides the Client role type.

• The LocatorCreation role model lets a figure object create locator objects. It is an instance of the
Factory Method pattern. The Figure class provides both the Client and the Creator role type and
the Locator class provides the Product role type.

• The LocatorStrategy role model lets a locator handle delegate the computation of its position on
the drawing area to a locator object. It is an instance of the Strategy pattern. The LocatorHandle
class provides the Context role type and the Locator class provides the Strategy role type.

All of these 4 remaining role models are pattern instances.

8.3 Experiences and evaluation
This final subsection presents some statistics from the case study. It examines the observations made
during carrying out the case study. These observations are related to the complexity of classes, the
complexity of object collaboration, the clarity of expected client behavior, and the reuse of design ex-
perience.

8.3.1 Statistics of the JHotDraw framework design
The JHotDraw framework provides us with the data shown in Table 8-1.

Number of classes 20

Number of role models 28

153

Number of pattern instances 20

Number of role types assigned to classes 66

Ratio of role types per class 3.3

Standard deviation of role types per class 3.02

Ratio of role models per class 1.4

Ratio of pattern instances per role model 0.71

Table 8-1: Raw data and computed figures from the JHotDraw framework.

These figures need to be put into context. The case study describes a large part of the interface archi-
tecture of the JHotDraw framework. It focuses on the key classes and omits less important implemen-
tation classes. If these less important classes were added, the role type/class and the pattern in-
stances/role model ratios would decline. Less important classes typically add less than the average
number of role types per class. Also, less important classes primarily add role models that are not pat-
tern instances, because they represent a simple client/service relationship between a client and the do-
main functionality of the class.

The pattern instance/role model ration is particularly high, because JHotDraw is a very mature frame-
work in which all design aspects have been worked out thoroughly. By following Kent Beck and Erich
Gamma in choosing specifically those classes presented in this case study, we automatically focussed
on design aspects that could be cast in pattern form.

8.3.2 Observations from the case study
During the definition of the role model interpretation of the JHotDraw framework design, I made the
following observations:

• The JHotDraw documentation infrequently speaks of roles. Also, the way design aspects are pre-
sented is frequently close to how we speak about role models. However, there is no explicit men-
tioning of role models. There are only roles mentioned as part of the class documentation. Also,
the original documentation uses the terms role and responsibility synonymously.

• Almost all of the design patterns map easily on role models. The notable exception is the use of
the Null Object pattern, which is purely class implementation oriented. Also, understanding the
class-based version of a pattern proved to be useful (despite role models) to understand the class
hierarchies.

• Role modeling was easy to apply and did not contradict the original documentation in any way.
Rather, it enhanced the existing information. It also recast the information in a way that unified the
original set of heterogeneous documentation (patterns, code comments, source code) in a common
form.

• It was necessary to read the source code to determine some of the role models. The role models
that were not present in the original documentation manifested themselves with little if any opera-
tions in a role type (for example, LocatorCreation). Yet, these role models represent important de-
sign aspects.

154

• Design patterns are an important part of the documentation, but they do not capture all the col-
laborative behavior of objects. Object collaboration tasks that cannot be described as pattern in-
stances are missed by a design patterns approach.

• The original documentation did not define well which classes were to act as clients of some other
classes and which were not to act as clients. There was seldom a mentioning of which classes were
supposed to act as clients of a particular feature of a class.

Based on these general observations, the following subsections conclude that role modeling is a more
uniform and more complete way of describing a design than is the set of techniques employed by the
original documentation. The following subsections review these observations in the light of the prob-
lems of managing class complexity, of managing object collaboration complexity, and of ensuring
clarity of use-client requirements. Also, the reuse of experience through design patterns in JHotDraw
is discussed.

8.3.3 Comparison of documentation techniques
Both the original JHotDraw documentation and the role modeling documentation are not a complete
documentation. Rather they are just one part of a possible more complete documentation. However,
each documentation is based on a specific set of techniques.

The JHotDraw documentation, as already pointed out, uses the following techniques:

• JavaDoc class documentation. Each relevant class is documented in the code. The text of the
documentation describes the purpose of the class and how its instances collaborate with other ob-
jects from other classes. A class sometimes also names patterns it is involved in.

• Pattern annotations. A traditional class model is used to show the structural relationships between
objects and classes. The classes are annotated with participant names of patterns. Each participant
identifies (through its pattern) some structural and behavioral aspect of the annotated class.

Role modeling employs two techniques for documenting a design.

• Class as composition of role types. A class is described as the composition of a set of role types.
(The specific documentation presented here omits a precise specification of this composition and
only suggests it through the class definition itself.)

• Class model with role models. Class relationships are described by role models. The role models
provide a uniform way of defining object collaboration. They both encompass design pattern ap-
plications and non-pattern based collaborative behavior.

The case study has not documented the classes and role models in detail. However, it has covered
enough ground to compare the two different documentation approaches.

The following subsections compare the two sets of documentation with each other.

8.3.3.1 Documentation of classes

The Figure class serves as an example for the comparison. There is no significant difference between
Figure and any other key class, so we can generalize from Figure to the other classes.

The Figure class defines the following roles, as derived from the source code, JavaDoc comments, and
the tutorial.

• A figure knows how to display itself (primary domain functionality).

• A figure can be composed from several figures (Composite pattern).

155

• A figure is manipulated through a set of handles (Factory Method and Adapter pattern).

• A figure provides connectors that define connection points (Factory Method).

• A figure can have an open-ended set of attributes (Property List pattern).

• A figure sends out events to registered observers (Observer pattern).

• A figure can be cloned to create a new figure (Prototype pattern).

• A figure may act as the core to a decorating figure (Decorator pattern).

• A figure provides locator objects for locator handles (Factory Method).

• A figure acts as an element of a drawing (Manager pattern).

The last two responsibilities could only be found by reading the source code. They were not present in
the JavaDoc comments or the tutorial. One possible reason is that they were simply forgotten. Another
one is that a responsibility without operations (like a figure acting as a drawing element) is easily
overlooked. A third possible reason is that the last example is not a pattern from [GHJV95].

Yet it is important to capture all the responsibilities. In the role–model–based documentation, all of
these responsibilities are described using role types from specific role models.

These role types are: Figure.Figure, FigureHierarchy.Child, HandleCreation.Creator and FigureAdap-
ter.Adaptee, ConnCreation.Creator, FigureAttribute.Provider, FigureObserver.Subject, FigureProto-
type.Prototype, FigureDecorator.Core, LocatorCreation.Client and LocatorCreation.Creator, and Fig-
ureContainer.Element.

From this discussion, we can conclude the following:

• The role type documentation is more complete than the original documentation, because role
modeling lets us capture all the responsibilities of a class. This includes behavioral responsibilities
that do not come with operations of their own and that are not participants of pattern instances.

• The role type documentation is more homogeneous than the original documentation. It uses one
concept, role type, rather than several (role, protocol, responsibility, pattern participant). Yet, this
single uniformly applied concept delivers a more complete description of a class.

Thus, role modeling gives a more homogeneous and more complete definition of a class.

8.3.3.2 Documentation of collaboration tasks

We continue with the comparison of collaboration tasks using the Figure class. Above, we identified
several role types of the Figure class. However, isolated roles do not describe how clients collaborate
with a Figure instance. Yet, we can determine the object collaborations from the JHotDraw source
code and its documentation.

• General clients use the domain functionality of a figure.

• CompositeFigure instances embed further figures (Composite pattern).

• Handle (subclass) instances are created by a figure (Factory Method pattern).

• Handle instances adapt a figure for interactive use (Adapter pattern).

• Connector instances are created by a figure (Factory Method pattern).

• General clients get and set figure attributes using generic key/value pairs (Property List pattern).

• FigureChangeListener (implementor) instances receive events from a figure (Observer pattern).

• CreationTool instances clone a figure prototype for new figures (Prototype pattern).

156

• DecoratorFigure (subclass) instances decorate any kind of figure (Decorator pattern).

• Locator instances are created by a figure (Factory Method pattern).

• A Drawing instance manages figures as its elements (Manager pattern).

Some of these collaborations could be derived from the JavaDoc comments, and some of them could
be derived from the pattern annotations in the tuto rial. However, the last two collaborations were not
documented, neither using JavaDoc comments, nor in the tutorial. One possible reason is again that
they were easy to overlook, because they did not come with operations. Another reason is that they are
not pattern instances and therefore could not be captured using pattern annotations.

Yet again, these missing collaborations make up an important part of what should be documented
about the Figure class and its collaborations. In the role–model–based documentation, all of these
collaborations are described using role models.

These role models are: Figure, FigureHierarchy, HandleCreation and FigureAdapter, ConnCreation,
FigureAttribute, FigureObserver, FigurePrototype, FigureDecorator, FigureContainer, and Locator-
Creation.

From this discussion, we can conclude the following:

• The role model documentation is more complete than the original documentation, because role
modeling lets us capture all relevant collaboration tasks. This includes collaboration tasks that are
not pattern instances and that are easy to overlook.

• The role model documentation is more homogeneous than the original documentation. It uses one
concept, role model, compared to the concepts of class and pattern annotation. Yet, this single uni-
formly applied concept delivers a more complete description of a class and its collaborations.

Thus, role modeling gives a more homogeneous and more complete definition of the individual object
collaboration tasks of a framework and hence of its overall object collaboration.

8.3.3.3 Documentation of requirements put upon use-clients

Finally, we consider the overall set of classes. None of the class documentation makes requirements
put upon use-clients explicit. The client is always assumed to make proper use of the framework ob-
jects. Also, there is no hint towards which classes clients may use, and which they may not use.

Role modeling in contrast makes all Client role types explicit, whether they are derived from design
pattern instantiations or not. In addition, by qualifying role types as free, role modeling lets developers
specify which role types are visible to outside clients and may be used by them.

In the context of JHotDraw, we can therefore conclude that role modeling lets us specify requirements
put upon use clients, whereas the original techniques do not provide such means.

8.3.4 Complexity of classes
Measured by the size of their role type sets, the most complex classes of the case study are the Figure,
DrawingView, DrawingEditor, Drawing, and Tool class. These are 5 out of 20 discussed classes.

The Figure class is a complex class that can be described well and uniformly using role types. The in-
terpretation of the design using role modeling demonstrates this: it provides all the information from
the source code and the tutorial, and it adds information that has been missing from the original docu-
mentation.

The role–model–based description does not contradict the original documentation. The contrary is
true: both the responsibilities defined in the class comments and the design pattern participants anno-

157

tating the class map directly on role types. The role–model–based description is an extension of the
existing documentation, cast in a uniform way.

Traditional class-focussed documentation only provides the structural relationships between classes.
The way JHotDraw is documented strongly suggests that this is insufficient to communicate its design.
The tutorial tries to overcome this shortcoming by annotating the design with pattern participants. Yet,
as the documentation has shown, role modeling delivers a more complete and more homogeneous
picture of the design than the original documentation does.

The comparison between role modeling and the JHotDraw techniques, which are already more elabo-
rate than the traditional purely class-focussed techniques, lets us conclude the following:

• Learning and using complex classes. As shown above, role modeling is a technique that lets us
more effectively describe complex classes. It is simpler to use, because it uses a uniform approach,
and it is more complete, because it lets us document all object collaboration tasks (rather than a
few selected ones).

More effectively describing a complex class means making it easier for developers to learn and
later to use that class. The description of a class using role types employs a coherent and uniform
way of separating the different design concerns involved. This helps developers better learn and
use it.

We cannot conclude anything regarding the design process, because JHotDraw was not developed
with role modeling in mind (even though use of the employed techniques suggest to me that the devel-
oper implicitly used role modeling or something very similar to it).

8.3.5 Complexity of object collaboration
Complex classes are one side of the coin, complex object collaborations the other. Instances of the
core classes Figure, Drawing, DrawingView, DrawingEditor, and Tool collaborate with each other in
several different ways. Understanding how these collaborations work is vital to understanding the
framework design.

The behavior of instances of (subclasses of) Figure in relation to other objects can be described using
role models. In contrast to the aforementioned set of heterogeneous techniques, role modeling lets us
do this in a uniform and complete way. The role–model–based presentation of the framework captures
all the information provided by the original developer and adds information that is missing.

Again, the role–model–based documentation does not contradict the original documentation but rather
enhances it. It adds to it where necessary. Design patterns may uniformly document collaborative be-
havior. However, they do not do this completely; they miss out collaboration tasks that cannot be de-
scribed as pattern instances.

In the context of JHotDraw, these arguments based on the comparison of the two sets of documenta-
tion, let us conclude the following on the use of role modeling for complex object collaborations.

• Learning and using complex collaborations. As shown above, role modeling is a technique that
lets us more effectively describe object collaboration behavior than possible with the techniques
employed in the JHotDraw documentation. It is more effective than design patterns, because pat-
terns ignore role models not based on patterns.

More effectively describing object collaboration behavior means making it easier for developers to
learn and use the classes involved in the collaboration. The need for breaking up the overall col-
laboration into pieces is recognized in the original JHotDraw documentation through the use of
design patterns, but is only carried out fully through the use of role models.

158

JHotDraw was not designed with role modeling in mind, so we cannot conclude anything on the de-
sign process of the object collaboration tasks.

8.3.6 Clarity of requirements put upon use-clients
Role modeling makes requirements put upon use-clients explicit, as far as the method allows. The
original documentation does not address this problem.

In the context of JHotDraw, this lets us conclude:

• Learning requirements put upon use-clients, and using a framework according to these require-
ments. Both are eased through role modeling, because the original techniques do not provide any
support here.

JHotDraw was not designed with role modeling in mind, so we cannot conclude anything on the proc-
ess of defining the requirements put upon use-clients.

8.3.7 Reuse of experience through design patterns
JHotDraw, and hence this case study, shines when it comes to reuse of experience through design
patterns. JHotDraw exhibits a high “design patterns density”, i.e., its design is based on many pattern
instances. However, the JHotDraw pattern annotations and the role modeling technique have different
characteristics.

Annotating classes with participant names from a design pattern indicates that instances of the class
exhibit behavior within the context of the pattern application according to the definition of the par-
ticular participant. However, there is no 1:1 mapping between a design pattern as presented in
[GHJV95], and a specific class structure, nor is there a 1:1 mapping between a participant and a spe-
cific type or interface. It is not clear how specific operations and operation signatures look like, be-
cause a pattern is not the same as its application.

Therefore, annotating classes with pattern participants gives hints to users about the collaborative be-
havior of its instances, but does not precisely specify this behavior. Users will always have to read the
class documentation and the source code to determine which operations belong to which participant.

Role models, on the other hand, are always a concrete rather than an abstract design artifact. The in-
volved role types specify precisely (within the capabilities of the chosen specification mechanism) the
behavior of objects conforming to this type. However, to get a quick grasp at a role model that is a
pattern instance, users have to map a pattern participant onto a role type. Here, the role–model–based
design patterns catalog [Rie97c] helps significantly, because it already casts the pattern in role model
form.

Therefore, with role modeling users do not have to bridge a gap between a design pattern and a con-
crete design artifact. There is no hurdle of understanding a design pattern first, before they can under-
stand a design.

However, to reuse their design experience, they must connect the specific role model at hand with an
abstract design pattern. As I have described earlier [Rie96a], role modeling makes it easier to represent
and apply design patterns, because it adds more flexibility to allocating role types to classes.

Role modeling has a lower entrance hurdle than the original JHotDraw documentation technique: it
does not require developers to know a pattern to understand a design aspect. However, to fully benefit
from it, design patterns should be known. Role modeling then makes it easy to recognize these pat-
terns, because it more flexibly allows their application in a design.

9
Thesis Validation

This chapter validates the dissertation thesis. It first reviews the thesis and then devises a validation
strategy. Based on the form of the thesis statement, the validation strategy is to split the thesis up into
nine parts, each of which can be validated individually. Every sub-validation is carried out using gen-
eral arguments about object-oriented framework design that are backed by the observations made and
experiences gained in the case studies. The validation of the dissertation thesis follows from the sub-
validations.

9.1 Thesis review and validation strategy
Chapter 2 presents the final version of the thesis of this dissertation:

Thesis statement of dissertation (final version, taken from Chapter 2)

Role modeling for framework design makes the following activities easier to carry out for the
expert framework developer and user than is possible with traditional class-based approaches:

• designing and redesigning a framework;

• learning a framework from its documentation;

• using a framework that is already understood;

The following problems are addressed and their severity is reduced:

• complexity of classes;

160

• complexity of object collaboration;

• clarity of requirements put upon use-clients.

This form of the thesis helps to determine what to prove and which constraints to adhere to while do-
ing so.

First, a validation of the thesis must be based on a comparison between the “traditional class-based
approach” and the role modeling approach. Unless stated otherwise, role modeling always means “role
modeling for framework design as defined in this dissertation”. Traditional class-based approach
means what you can natively express using classes as the only central modeling concept (for example,
UML). Also, the discussion is restricted to expert developers and users only.

Then, the thesis is split up into different parts: designing and redesigning a framework, learning a
framework from its documentation, and using an already understood framework. These are separate
activities that can be discussed and validated independently.

Finally, the thesis defines in which respect role modeling eases the different activities by stating which
problems it addresses: class complexity, object collaboration complexity, and clarity of requirements
and constraints put upon use-clients.

This leads to a matrix of sub-theses (claims) to be validated, displayed in Table 9-1.

(activity, problem)
matrix

designing and redes-
igning a framework

learning a framework
from its documentation

using an already un-
derstood framework

complexity of
classes

Validity to be shown. Validity to be shown. Validity to be shown.

complexity of
object collaboration

Validity to be shown. Validity to be shown. Validity to be shown.

clarity of requirements
put upon use-clients

Validity to be shown. Validity to be shown. Validity to be shown.

Table 9-1: The dissertation thesis broken up into nine sub-theses.

The matrix has the set of activities as its X-dimension, and the set of problems as its Y-dimension. A
matrix cell is referenced using A for activity, P for problem, and a digit for the particular activity and
problem. For example, A2P1 is the top middle matrix cell (activity: learning a framework; problem:
complexity of classes).

For each cell in the matrix, it needs to be shown that the X dimension, the activity, becomes easier (or
stays the same) with respect to the Y dimension, the problem, if one compares the traditional class-
based approach with the role modeling approach.

Because the dissertation thesis is viewed as the conjunction of these nine sub-theses, the overall thesis
validation becomes the conjunction of the nine sub-validations.

The matrix form suggests a validation strategy in which each sub-thesis is assessed and validated indi-
vidually. For nine sub-theses, this is a tedious and repetitive undertaking, because many arguments
and experiences apply to several of them.

A better validation strategy is to walk through a set of key properties of the role modeling approach
and show how they lead to arguments that validate one or more of the nine sub-theses. In a second
step, for each sub-thesis, the arguments can then be put together to form the overall validation of the
sub-thesis. With all nine sub-theses done, the overall thesis validation is also done.

161

The next subsection carries out the thesis validation using this strategy.

9.2 Thesis validation
This subsection presents the actual validation of the dissertation thesis. It follows the validation strat-
egy outlined above: it first walks through a set of key properties of the role modeling method, and then
consolidates the resulting arguments for each sub-validation. The thesis validation follows as the con-
junction of the sub-validations.

9.2.1 Describes class as composition of role types
Role modeling, as defined in this dissertation, lets developers describe classes as compositions of dis-
tinct role types. Or, viewed the other way round, class interfaces are broken up into role types. A role
type is used in two different contexts. In the first context, the role type is part of a role model, where it
is defined. In the second context, a role type is part of the role type set of a class, where the class de-
fines how the role types are composed to determine the behavior of its instances. Traditional class-
based modeling offers no appropriate means to split up a class interface into distinct parts.

When dealing with a class, developers switch between the two views. On the one hand, they focus on
the role type in the context of its role model to define, use, or understand the specific aspect of the
class being described by the role type. On the other hand, they focus on the composition of the role
types to understand what makes up the class as a whole and how acting in the context of one role will
cause actions in the context of another role of instances of that class.

Describing a class as the composition of role types and breaking up a class interface into role types
separates design concerns along the lines of object collaboration tasks. This property of the approach
helps with the following activity/problem pairs:

• Designing complex classes of a framework (A1P1). Role modeling makes it easier to design a
class and its interface, because keeping the role model and the class view separate and being able
to easily switch between them reduces the complexity of the design task.

The experiences with designing the Geo frameworks and the Tools framework support this argu-
ment. For example, the Geo system has several complex service interfaces. Splitting them up into
different role types significantly reduced the complexity of the remaining design task.

• Learning complex classes of a framework (A2P1). Role modeling makes it easier to understand a
class, because keeping the role model and the class view separate and being able to easily switch
between them reduces the complexity of the learning task.

It was a common experience in the Geo project that it is easier to learn key classes from a frame-
work designed and documented using role modeling than possible with documentation based on
traditional class based modeling. The same argument holds true for the JHotDraw framework.

• Using a class from an well-understood framework (A3P1). Role modeling makes it easier to use a
class, because it is better understood, and because developers can focus on the different uses of a
class independently of each other.

Describing classes as compositions of role types eased using key classes from the Geo frame-
works. Also, when designing and implementing client classes, the focus is on single role types
rather than full classes. This reduces the complexity of defining client classes further.

162

The property «describes class as composition of role types» of the role modeling approach therefore
significantly eases designing, learning, and using complex classes of a framework. This addresses the
activity problem pairs A1P1, A2P1, and A3P1.

9.2.2 Breaks up relationship descriptions into role models
Role modeling, as defined in this dissertation, breaks up the object association or aggregation descrip-
tions of traditional class-based modeling into role models. A role model focuses on one particular ob-
ject collaboration task, while a traditional object relationship description comprises all possible tasks
carried out on an instance of the relationship description. The object relationship description between
two classes becomes the sum of the role relationships descriptions between role types from role mod-
els that connect these two classes. Traditional class-based modeling offers only object relationship
descriptions between classes, but no role models.

Role models can be viewed as zooming in on an object relationship description. They detail what is
going on between the involved classes. Developers can therefore maintain two different views on how
classes relate to each other. They can see the traditional object relationship descriptions that deter-
mine, which object may relate to which other object in what quantities, etc., and they can zoom in on
any such relationship description to determine the different object collaboration tasks carried out using
instances of these relationship descriptions.

Chapters 3 and 4 have shown that the role model view is an extension of the relationship description
view, and that the object relationship descriptions between classes can be derived from role models.
The object relationship descriptions determine the base skeleton, and the role models describe the be-
havior of objects working along this predefined structure. These complementary views help with the
different activities and their problems.

Breaking up relationship descriptions into role models eases handling the complexity of object col-
laboration. This property of the approach helps with the following activity/problem pairs:

• Designing the object collaboration of a framework (A1P2). Role modeling eases designing the
framework’s object collaboration, because developers can zoom in on the object relationship
structure, determine the tasks carried out along its line, and switch back to the big picture again.
They can work on a detail level that is best for the current design issue, be it the overall structure
or the individual collaboration tasks.

The experiences with the Geo frameworks and the Tools framework directly support this argu-
ment. During design sessions team members continuously switched between the class structure
and their relationship descriptions on the one hand, and the detailed discussion of how instances of
these classes collaborate on specific tasks using role models on the other hand. Many of these role
models were design pattern instantiations, which made them a well-defined design issue in itself.

• Learning the object collaboration of a framework (A2P2). Object relationship descriptions tell us
about the structural relationships between objects of a framework, but they tell us nothing about
the tasks they carry out. Role models do that. Role modeling significantly eases learning the object
collaboration, because it makes information explicit that would otherwise be lost or described in
other (then sub-optimal) ways.

Again, the experiences from the case studies directly support this argument. When team members
had to understand a new design or learn an existing framework, the two views of object relation-
ship descriptions and role models helped them better and faster understand the intent of a design.
Also, team members could more readily recognize design patterns based on the catalog of role
model design patterns [Rie97a]. This helped reusing prior experience.

• Using classes from an well-understood framework (A2P3). Using role models, use-clients can be
precise about what they want from a framework class (by picking up a specific free role type).

163

Using object relationship descriptions, use-clients always get a bundle of role models, of which
they may only be interested in one. Also, in traditional class-based modeling, use-clients without
operations are not represented at all, even if they play a significant role. Role models provide free
role types even for use-clients that have no operations. Hence important information is docu-
mented that gets lost in class-based modeling.

The case study experiences support this argument. For example, the Geo service interfaces clearly
separated the different issues of using the services as free role types. Team members could there-
fore distinguish between the different tasks like retrieving the service object, configuring it with
information, and using its primary functionality. These tasks could be carried out by different ob-
jects and were not bound to one specific client class.

The property «breaks up relationship descriptions into role models» of the role modeling approach
therefore significantly eases designing, learning, and using a framework that has complex object col-
laboration. This addresses the activity/problem pairs A1P2, A2P2, and A3P2.

9.2.3 Makes requirements on clients explicit
Role modeling, as defined in this dissertation, makes requirements and constraints put upon use-client
classes explicit. The requirements and constraints are described using role types and role constraints.
The role types are the free role types of a framework, and the role constraints are those constraints that
relate to free role types. How exactly requirements and constraints on clients are specified depends
primarily on the chosen type specification mechanism.

Traditional class-based modeling offers two possibilities to define requirements and constraints put
upon clients:

• classes or interfaces that client classes have to inherit from;

• class specifications as part of a framework class interface.

This has the following problems:

• Making clients inherit from classes to enforce constraints is too heavyweight an approach, if cli-
ents have to inherit unwanted baggage (implementation state, operation implementations). Par-
tially or fully implemented classes are not always an adequate means for specifying client con-
straints.

• Making clients implement specific interfaces is frequently better than making them inherit from
classes. If an interface represents a role type, the role modeling approach and the traditional class-
based approach are equivalent. However, in the traditional approach, such interfaces are used only
if operations are associated with them. No-operation free role types are missed.

• Making requirements and constraints put upon clients part of a framework class specification
forces developers of any client for any collaboration task to keep in mind the whole specification.
Splitting it up into role types separates different behavioral aspects of the class and therefore re-
duces complexity. (See the arguments of why to break up a class interface into role types).

Moreover, the traditional approach to requirements and constraints specification puts the specification
into the wrong place, namely the framework class. It is better to put it into the free role types, because
the requirements are requirements on clients, and need to be adhered to by them, and not by the
framework classes. However, as long as there was no concept of free role type, there was no possibil-
ity of making explicit that use-clients are responsible for adhering to the specifications. Thus, they
were specified as part of a framework class interface.

Finally, the free role types are part of free role models. The additional view on object collaboration
tasks provides the benefits of breaking up class interfaces into role types and breaking up object rela-

164

tionship descriptions into role models. This also applies to the specification of requirements and con-
straints put upon clients. (See the discussion of these role modeling properties above).

For these reasons, role modeling provides a better background for specifying the requirements and
constraints put upon clients than traditional class-based modeling. Role modeling therefore helps with
the following activity/problem pairs:

• Designing use-client requirements (A1P3). Free role types are a better means of enforcing re-
quirements and constraints than classes. They are also a better means than interfaces, if these are
only used to specify requirements that are attached to operations. Also, role types stem from role
models, and therefore show how they tie in with the framework. Traditional class-based modeling
falls short here as well.

The experiences with the Geo frameworks and the Tools framework support this argument. For
every role type provided by a framework class, the defining role model had to specify at least one
client role type. Team members therefore always had to ask themselves what a specific role type
was good for, and how the counterpart in the described collaboration task had to look like. This is
in contrast to earlier experiences with traditional class-based modeling, where it was easy to forget
about clients, and that they also had to fulfill requirements and adhere to constraints.

• Learning how to use a framework (A2P3). Free role types specify requirements and constraints
well and completely (as far as possible with the chosen type specification mechanism). Moreover,
they provide separation of concerns as discussed above in the subsections on breaking up class
interfaces and object collaborations. Both make it easier to learn how to use a framework.

Again, this argument is supported by the experiences from the case studies. The primary reason is
the separation of concerns achieved by defining free role types and by breaking up the relationship
descriptions into role models. In class-based modeling, client requirements are either not specified
or, at least, they are more difficult to understand. Thus, role modeling reduced the complexity of
understanding all requirements and constraints.

• While using a framework, adhering to its requirements and constraints (A3P3). Every use-client
has to specify explicitly how it ties in with the framework by stating which free role types it uses.
None can be forgotten or omitted. This requirement allows checking for proper use of the frame-
work.

This argument is also supported by the case study experiences. First, learning a Geo framework
more easily also made it easier to lay out how to use it. Second, when using it, the free role types
and their description where a constant reminder and measure of how use-client classes had to look
like and how their implementation had to behave.

The property «makes requirements on clients explicit» of the role modeling approach therefore eases
designing, learning, and using a framework with respect to the requirements and constraints put upon
clients. This addresses the activity/problem pairs A1P3, A2P3, and A3P3.

9.2.4 Supports reuse of experience
Role modeling, as defined in this dissertation, better supports developers in reusing previous design
experience than possible with a traditional class-based approach. Reuse of design experience can take
on two forms in this context. First, developers may adapt earlier designs to new requirements and de-
rive the new design from this, and second, developers may apply design patterns [GHJV95, RZ96].

In comparison to class-based modeling, role modeling eases reusing experience, because the separa-
tion of concerns it achieves makes designs more readily decomposable into pieces and recomposable
from these pieces. Role modeling supports this particular well, because it works along the lines of ob-
ject collaboration, which are a main focus of design and also of reusing experience.

165

• Reuse of experience through design adaptation. In this form of reuse, a developer reconsiders an
old design, takes out the pieces not needed in the new design, changes the pieces according to new
requirements, and adds new pieces as required for the new design. The result is the new design.
An example are the Geo service interfaces, which are very similar, but differ in the details of the
actual services provided.

If the old design has a clear role modeling description, reusing experience this way is made easier,
because the old design already separates the different concerns that become the individual focus of
attention when adapting the design for a new situation. The design is adapted along the lines of the
object collaboration tasks that are described by the role models of the old and then new design.

• Reuse of experience through design patterns. In this form of reuse, an experienced developer rec-
ognizes a design problem and recalls a design pattern that he applies to solve the problem in the
given context. Design patterns can take on many different forms. The most common object-
oriented design patterns have been described in the seminal work of Gamma et al. [GHJV95].
Each of the design patterns from this catalog makes one specific design aspect flexible so that it
can be changed easily.

Most of these patterns are about the distribution of responsibilities among the objects of a design,
and how the responsibilities are assigned to classes. Using role modeling terminology, each pat-
tern instance focuses on one specific object collaboration task, and the assignment of responsibili-
ties to classes corresponds to putting role types from a role model into the role type sets of classes.
Of the patterns from the design patterns catalog, the larger part can be described well using role
modeling [Rie97a, Rie97c]. (Also see Appendix D.)

In a design, a design pattern application needs to be composed with other design pattern applica-
tions and role models. Recasting design patterns in role model form makes it easier to keep the
different collaboration tasks separate, and thereby eases the reuse of experience. As I have demon-
strated, using role models for describing design patterns makes them more flexible and more eas-
ily applicable, without making them use their particular patterns quality [Rie96a]. Traditional
class-based modeling offers no such support.

Being able to reuse experiences addresses every kind of problem in object-oriented framework design.
Therefore, role modeling better supports all of the activities and eases all of the problems than class-
based modeling does (in this respect).

When designing the Geo system, the team made use of its own version of the design patterns catalog,
which recast all the common design patterns in role model form. This catalog was a constant com-
panion, and helped team members in all of the activities regarding all of the problems.

The use of design patterns is ubiquitous in the Geo frameworks, the Tools framework, and the JHot-
Draw framework. They have been applied to form or used to describe free role models as well as in-
ternal role models. They serve to more readily understand the framework’s client collaboration as well
as its inner workings. And they support using the framework.

Therefore, the property «supports reuse of experience» of the role modeling approach eases designing,
learning, and using a framework with respect to all stated problems. This addresses the activ-
ity/problem pairs A1P1 through to A3P3.

9.2.5 Consolidation of validation
There are further properties of role modeling that help with framework design and use (for example,
frameworks are made explicit design artifacts with well-defined boundaries) and that have not been
discussed in the previous subsections. However, the purpose of this section is to validate the disserta-
tion thesis. Therefore, properties that do not directly contribute to this validation have been omitted.

166

The previous subsections discussed the following properties and examined their effect on the activ-
ity/problem pairs derived from the dissertation thesis.

• Section 9.2.1: Describes class as composition of role types. Helps ease the problem of dealing
with the complexity of classes for all three activities.

• Section 9.2.2: Breaks up relationship descriptions into role models. Helps ease the problem of
dealing with complex object collaboration of a framework for all three activities.

• Section 9.2.3: Makes client requirements explicit. Helps ease the problem of specifying require-
ments and constraints put upon use-clients of a framework for all three activities.

• Section 9.2.4: Supports reuse of experience. Helps ease every problem for every activity, because
developers have experience to reuse for all of them.

Table 9-2 shows where to find the arguments that prove a particular activity/problem pair.

(activity, problem)
matrix

designing and redes-
igning a framework

learning a framework
from its documentation

using an already un-
derstood framework

complexity of
classes

• 9.2.1
• 9.2.4

• 9.2.1
• 9.2.4

• 9.2.1
• 9.2.4

complexity of
object collaboration

• 9.2.2
• 9.2.4

• 9.2.2
• 9.2.4

• 9.2.2
• 9.2.4

clarity of requirements
put upon use-clients

• 9.2.3
• 9.2.4

• 9.2.3
• 9.2.4

• 9.2.3
• 9.2.4

Table 9-2: Where to find the arguments for the sub-validations.

The validation of the dissertation thesis is the conjunction of the validation of the nine sub-theses. Ta-
ble 9-2 shows in which subsection each sub-thesis has been addressed and validated. For each sub-
thesis, there are at least two major validating arguments. Because the thesis dissertation is the con-
junction of these sub-validations, Table 9-2 concludes the thesis validation.

9.3 Summary (meaning of validation)
The thesis validation shows that role modeling as defined in this dissertation is superior to traditional
class-based modeling with respect to the problems stated initially in this work. As reviewed in Chapter
2, related work has also tried to address some of the problems that role modeling solves. However,
none of this related work achieves this density of problem solving as role modeling.

It is the nature of a validation to focus exclusively on what needs to be validated and to ignore any
other consequences. However, it may be exactly the side effects, why a specific statement, in this case
the dissertation thesis, was set up in the first place. Thus, the validation does not tell the full truth
about why role modeling represents an improvement over current practice.

In explaining the thesis as the sum of several distinct parts, it became possible to more precisely de-
scribe the thesis, and to devise a validation strategy based on breaking it up into parts. Doing so, how-
ever, the whole, which is more than the sum of its parts, got lost. Much of the power of role modeling
for framework design as defined in this dissertation stems from the interaction of the different parts.
Without role types, there would be no role models. Without role models, there would be no precise

167

definition of client interaction. Without role models, there would only be limited increase of reuse of
experience. Etc.

However, for the purposes of the thesis validation, this is irrelevant. It needed to be shown that role
modeling is a significant improvement over current practice, and this has been done. How the valida-
tion result is used is not to be defined by the dissertation. It will become apparent in the practice of
using role modeling for framework design.

168

10
Conclusions

This chapter sums up the contributions made by the dissertation, points towards future work, and pro-
vides final conclusions on the results of this dissertation.

10.1 Contributions
The primary result of this dissertation is that role modeling for framework design, as described in
Chapters 3 and 4, makes the design of object-oriented frameworks easier than is possible with tradi-
tional class-based approaches. This claim is detailed in Chapter 2. Naturally then for a dissertation,
most parts of the exposition focus on validating precisely this claim. Chapters 6 to 8 provide case
studies of using this method, and Chapter 9 validates the thesis based on the case studies.

Next to validating the thesis, this dissertation presents a novel modeling approach to framework de-
sign. It is both a precondition for the thesis as well as a major achievement in itself. Role modeling for
framework design achieves the following results:

• Novel role modeling concepts. This dissertation introduces role constraints as a new concept to
more precisely define role models. Role constraints let developers specify how roles may or may
not come together in an object. Earlier role modeling approaches offer no such description mecha-
nism.

• Integration of role modeling with class-based modeling. Earlier role modeling approaches, in par-
ticular [Ree96], view role modeling and class-based modeling as different paradigms. Andersen,
following up on Reenskaug, brings classes back into the picture, but still views them as largely un-
related to roles [And97].

170

This dissertation shows how role modeling can be integrated with traditional class-based modeling
so that the respective strengths are added and the weaknesses are dropped.

− The dissertation revises the existing concepts of role, role type, role model, class, and class
model to better fit together, and is precise about the distinction between type level (role type,
class, role model, class model) and instance level (role, object collaboration task, object col-
laboration).

− The dissertation demonstrates the complementary focus of classes and role models. A role
model describes how objects collaborate for one specific object collaboration task. A class de-
fines how several roles from different collaboration tasks come together in one object, thereby
defining how to bridge and integrate the tasks.

• Introduction of an explicit framework concept. The modeling method gives a precise definition of
what a framework is and what its properties are. The definition of the framework concept is based
on the notions of free role model, built-on class set, and extension point classes.

− Using free role models, developers specify how a framework is to be used by clients.

− Using built-on class sets and free role models, developers specify how a framework builds on
other frameworks and how it depends on its environment. While software engineering has
long understood that next to provided functionality also required functionality needs to be
specified [Wir82, PN86], facilities to do so in framework design have been missing.

− Using extension-point class sets, developers can specify how a framework may be extended.

These concepts are unique to frameworks and let developers speak about and deal with frame-
works in a framework-specific way. A framework becomes an explicit design artifact rather than
just another class model.

In addition, role modeling for framework design provides excellent means for describing design pat-
terns and for showing how they are used in the context of object-oriented frameworks.

• Description of design patterns. Role modeling as defined in this dissertation is a more general way
of illustrating design patterns. A role model illustration of a pattern can be applied in more ways
than a class-based illustration. A role model illustration adds to a class-based illustration, because
a class-based illustration typically suggests too rigid a structure of pattern application.

• Application of patterns in framework design. Because role models are prepared for composition
right from the start, they show well how pattern applications compose and overlap in framework
design. Class-based modeling offers no such facilities. Annotating classes as participants of a pat-
tern instantiation goes into the right direction but stops halfway. Role modeling goes all the way.

These contributions are described in more detail and validated in the main body of the dissertation.
Some of them have also been published at conferences and in journals [Rie96a, Rie97c, RG98,
RBGM99].

10.2 Future work
This dissertation work opens several venues for future work, both with a narrow focus on role model-
ing, and a larger focus on frameworks and design patterns.

• Choice of a type specification mechanism. The dissertation suggests no specific type specification
mechanism. Any mechanism that provides types, subtyping, and type composition suffices. How-

171

ever, some type specification mechanisms may be more convenient and more effective to use than
others. Therefore, a mechanism custom-tailored to the needs of role modeling may be developed.

• Introducing dynamic behavior specifications. Because type specification issues are largely ignored
in this dissertation, not much is said about dynamic behavior specifications. However, role models
are best described not only by individual role types, but also by descriptions of the allowed col-
laborative behavior of objects acting according to the role types. Therefore, Reenskaug’s or An-
dersen’s mechanism to describe collaborative behavior of object roles may be adapted [Ree96,
And97], or a new one may be developed.

• Composition of role types independently of classes. Role modeling for framework design as pre-
sented in this dissertation composes role types to derive classes. I have never found a real need to
compose role types to become composite role types. However, it may be a nice-to-have feature
that could be useful once it is available.

Future work of this kind may directly build on current type specification mechanisms. However, ex-
isting mechanisms need to be adapted to fit role modeling in such a way that the separation of con-
cerns achieved by role modeling is maintained. The benefit of reduction in complexity that role mod-
eling achieves is directly based on the separation of concerns it provides.

• Inheritance relationship between role models (addressing the problem of covariant redefinition).
The dissertation does not introduce a concept of inheritance between role models. Any role model
that could be viewed as a specialization of an existing role model is viewed as a different unrelated
role model. It seems helpful in many situations, however, to view one role model as a specializa-
tion of another more general role model. For example a simple PersonModel/PersonView role
model might be specialized to form a CustomerModel/CustomerView role model.

Inheritance between role models might give a new twist to the problem of covariant redefinition of
operation signatures. The covariant redefinition of parameters of an operation in a subclass (and
the contravariant redefinition of return value or object types) serves to ensure that class hierarchies
are specialized in parallel. The covariant redefinition of operations of a class is always carried out
with a particular partner class in mind. Thus, covariant redefinition is about ensuring constraints
on a set of allowed collaboration tasks (rather than individual classes). Expressing these collabo-
ration tasks is all what role models are about.

• Extension of programming languages with role modeling concepts. It would certainly be helpful to
support the implementation of a role–model–based design with dedicated programming constructs.
Such a role-oriented programming language might provide concepts for directly and conveniently
expressing role types and role models.

Current work already points into that direction. Van Hilst presents a role programming method
using C++ templates [Van97], and Kendall uses aspect-oriented programming to more easily im-
plement role–model–based designs [Ken99].

• Support for design patterns and design templates. Role modeling lets developers more easily ap-
ply and recognize design patterns in object-oriented designs (than is possible with traditional
class-based designs). A dedicated design notation for specifying design templates for design pat-
terns may be based on role modeling rather than class-based modeling [Rie96a]. Then, the appli-
cation of a design pattern leads to a specific role model that can be easily composed with other
role models in the context of an object-oriented design.

On the pattern/template level, something alike to composite role types is going to be helpful, as
illustrated by the Bureaucracy pattern [Rie98]. The Bureaucracy pattern is a composite pattern in
which different role types from different design patterns are composed to form the pattern/tem-
plate level equivalent of a composite role type.

• Empirical assessment of use of design patterns in framework design. The case studies of Chapters
6 to 8 provide some empirical data about the frequency of use of design patterns in framework de-

172

sign. Role models can be used as a kind of object-oriented function-point, that is, as an atomic unit
of functionality in framework design. Thus, role models may serve as a coarse-grained measure
for complexity in framework design.

An analysis of frameworks described using role modeling can provide us with a figure about the
frequency of design pattern application in relation to the overall functionality (= total number of
role models in a framework’s design). Arriving at a statement like “60% of a framework’s func-
tionality can be described using design patterns” is a valuable result to justify further research into
design patterns.

Finally, marrying component-based design with object-oriented frameworks is a whole new research
area. It does not follow directly from this dissertation, but it should take the new understanding of
frameworks gained through this dissertation into account. Then, role modeling is likely to find its way
into component design and implementation. Role modeling might even be reintroduced on a compo-
nent framework level to better describe how components collaborate.

10.3 Final conclusions
Role modeling provides separation of concerns in a way that is highly beneficial to class-based design
of frameworks. This dissertation shows how to marry role modeling with class-based design of
frameworks. Role modeling for framework design has the following properties:

• It reduces complexity of classes in framework design.

• It reduces complexity of object collaboration in framework design.

• It better supports specifying requirements put upon use-clients of a framework.

• It lets developers apply and recognize design patterns in frameworks more easily.

• It provides new and revised role modeling concepts for more precise framework design.

• It makes frameworks first class citizens of software architecture.

Role modeling for framework design combines the strengths of role modeling with those of class-
based modeling while leaving out their weaknesses. It is therefore an evolutionary extension of current
methods that preserves existing investments. Finally, role modeling for framework design is the first
comprehensive modeling method to make frameworks explicit design artifacts.

A
References

ABGO93 A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. “An Object Data Model with Roles.”
In Proceedings of the 19th International Conference on Very Large Databases. San
Mateo, CA: Morgan Kaufmann, 1993. Page 39-51.

AC96 Martin Abadi and Luca Cardelli. “On Subtyping and Matching.” ACM Transactions on
Programming Languages and Systems 18, 4 (July 1996). Page 401-423.

AG96 Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley,
1996.

All97 Robert J. Allen. A Formal Approach to Software Architecture. Ph.D. Thesis, CMU-CS-
97-144. Pittsburgh, PA: Carnegie Mellon University, 1997.

And97 Egil P. Andersen. Conceptual Modeling of Objects. Ph.D. Thesis. Oslo, Norway: Univer-
sity of Oslo, 1997.

Bäu98 Dirk Bäumer. Softwarearchitekturen für die rahmenwerkbasierte Konstruktion großer
Anwendungssysteme. Dissertation. Hamburg, Germany: Universität Hamburg, 1998.

BBE95 Andreas Birrer, Walter Bischofberger, and Thomas Eggenschwiler. “Wiederverwendung
durch Framework-Technik-Vom Mythos zur Realität”. OBJEKTSpektrum 5 (1995). Page
18-26.

BC98 Kent Beck and Ward Cunningham. “A Laboratory for Teaching Object-Oriented Think-
ing.” In Proceedings of the 1989 Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’89). ACM Press, 1989. Page 1-6.

BCC+96 Kent Beck, James O. Coplien, Ron Crocker, Lutz Dominick, Gerard Meszaros, Frances
Paulisch, and John Vlissides. “Industrial Experience with Design Patterns.” In Proceed-
ings of the 18th International Conference on Software Engineering (ICSE 18). IEEE
Press, 1996. Page 103-114.

174

BCG95 William Berg, Marshall Cline, and Mike Girou. “Lessons Learned from the OS/400 OO
Project.” Communications of the ACM 38, 10 (October 1995): 54-64.

Be97 Be, Inc. Be Developer Guide. O’ Reilly, 1997.

BGK+97 Dirk Bäumer, Guido Gryczan, Rolf Knoll, Carola Lilienthal, Dirk Riehle, and Heinz Zül-
lighoven. “Framework Development for Large Systems.” Communications of the ACM
40, 10 (October 1997). Page 52-59.

BGR96a Walter Bischofberger, Michael Guttman and Dirk Riehle. “Architecture Support for
Global Business Objects: Requirements and Solutions.” In Joint Proceedings of the
SIGSOFT ’96 Workshops (ISAW-2). Edited by Laura Vidal, Anthony Finkelstein,
George Spanoudakis, and Alexander L. Wolf. ACM Press, 1996. Page 143-146.

BGR96b Walter Bischofberger, Michael Guttman and Dirk Riehle. “Global Business Objects: Re-
quirements and Solutions.” In Proceedings of the Ubilab Conference '96, Zürich. Edited
by Kai-Uwe Mätzel and Hans-Peter Frei. Konstanz, Germany: Universitätsverlag, 1996.
Page 79-98.

BHH+97 Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein, Barbara Paech, Bernhard
Rumpe, and Veronika Thurner. “Towards a Formalization of the Unified Modeling Lan-
guage.” In Proceedings of the 1997 European Conference on Object-Oriented Program-
ming (ECOOP ’97). Springer Verlag, 1997. Page 344-366.

BHKS97 Manfred Broy, Christoph Hofmann, Ingolf Krüger, and Monika Schmidt. “A Graphical
Description Technique for Communication in Software Architectures.” In Software Ar-
chitectures and Design Patterns in Business Applications. Edited by Manfred Broy, Ernst
Denert, Klaus Renzel, and Monika Schmidt. Technical Report TUM-I9746. Munich,
Germany: Technische Universität München, 1997.

BMR+96 Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

Box98 Don Box. Essential COM. Addison-Wesley, 1998.

BR98 Dirk Bäumer and Dirk Riehle. “Product Trader.” In Pattern Languages of Program De-
sign 3. Edited by Robert C. Martin, Dirk Riehle, and Frank Buschmann. Addison-
Wesley, 1998. Page 29-46.

BRSW00 Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. “Role Object.” In Pattern
Languages of Program Design 4. Edited by Neil Harrison, Brian Foote, and Hans Roh-
nert. Addison-Wesley, 2000. Page 15-32. Originally published as: Dirk Bäumer, Dirk
Riehle, Wolf Siberski, and Martina Wulf. “Role Object.” In Proceedings of the 1997
Conference on Pattern Languages of Programming (PLoP ’97). Washington University
Department of Computer Science, Technical Report WUCS-97-34, 1997. Paper 2.1.

BRS+98 Dirk Bäumer, Dirk Riehle, Wolf Siberski, Carola Lilienthal, Daniel Megert, Karl-Heinz
Sylla, and Heinz Züllighoven. Values in Object Systems. Ubilab Technical Report
98.10.1. Zurich, Switzerland: UBS AG, 1998.

CIM92 Roy H. Campbell, Nayeem Islam, and Peter Madany. “Choices, Frameworks and Re-
finement.” Computing Systems 5, 3 (Summer 1992): 217-257.

Cox87 Brad J. Cox. Object-Oriented Programming: An Evolutionary Approach. Addison-
Wesley, 1987.

CP95 Sean Cotter, with Mike Potel. Inside Taligent Technology. Addison-Wesley, 1995.

DH72 Ole-Johan Dahl and C. A. R. Hoare. “Hierarchical Program Structures.” In Structured
Programming. Edited by Ole-Johan Dahl, Edsger W. Dijkstra and C. A. R. Hoare. Aca-
demic Press, 1972.

175

DW98 Desmond F. D’ Souza and Alan C. Wills. Objects, Components, and Frameworks with
UML: The Catalysis Approach. Addison-Wesley Longman, 1998.

EF97 Eric Evans and Martin Fowler. “Specifications.” In Proceedings of the 1997 Conference
on Pattern Languages of Programming (PLoP ’97). Washington University Department
of Computer Science, Technical Report WUCS-97-34, 1997. Paper 2.3.

FHG98 Donald Firesmith, Brian Henderson-Sellers, and Ian Graham. OPEN Modeling Language.
Cambridge University Press, 1998.

FK97 Robert G. Fichman and Chris F. Kemerer. “Object Technology and Reuse: Lessons from
Early Adopters.” Computer 30, 10 (October 1997). Page 47-59.

FS97 Mohamed E. Fayad and Douglas C. Schmidt (editors). Special Issue on Object-Oriented
Application Frameworks. Communications of the ACM 40, 10 (October 1997).

FSJ99 Mohamed Fayad, Douglas Schmidt, and Ralph Johnson. Building Application Frame-
works: Object-Oriented Foundations of Framework Design. Wiley & Sons, 1999.

Gam98 Erich Gamma. “Advanced Design with Patterns and Java.” Tutorial given at the 1998
European Conference on Java and Object Orientation. Copenhagen, Denmark, 1998. See
Appendix E for a pointer to the tutorial.

GHJV95 Erich Gamma. Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns—
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

GR89 Adele Goldberg and David Robson. Smalltalk-80—The Language. Addison-Wesley,
1989.

GSR96 Georg Gottlob, Michael Schrefl, and Brigitte Röck. “Extending Object-Oriented Systems
with Roles.” ACM Transactions on Information Systems 14, 3 (July 1996). Page 268-296.

Hal96 Terry Halpin. “Business Rules and Object Role Modeling.” Database Programming and
Design 9, 10. San Mateo, CA: Miller Freeman. Page 66-72.

Hal98 Terry Halpin. “UML Data Models from an ORM Perspective.” Journal of Conceptual
Modeling (http://www.inconcept.com/jcm), April 1998.

HHG90 Richard Helm, Ian M. Holland and Dipayan Gangopadhyay. “Contracts: Specifying Be-
havioral Compositions in Object-Oriented Systems.” In Proceedings of the 1990 Confer-
ence on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
’90). ACM Press, 1990. Page 169-180.

HO93 William Harrison and Harold Ossher. “Subject-Oriented Programming (A Critique of
Pure Objects).” In Proceedings of the 1993 Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’93). ACM-Press, 1993. Page 411-428.

HS88 Daniel Hoffman and Richard T. Snodgrass, “Trace Specifications: Methodology and
Models” IEEE Transactions on Software Engineering 14, 9 (September 1988). Page
1243-1252.

Hür94 Walter L. Hürsch. “Should Superclasses be Abstract?” In Proceedings of the 1994 Euro-
pean Conference on Object-Oriented Programming (ECOOP ’94, LNCS 821). Edited by
Mario Tokoro and Remo Pareschi. Springer-Verlag, 1994. Page 12-31.

JF88 Ralph E. Johnson and Brian Foote. “Designing Reusable Classes.” Journal of Object-
Oriented Programming 1, 2 (June/July 1988). Page 22-35.

Joh92 Ralph E. Johnson. “Documenting Frameworks using Patterns.” In Proceedings of the
1992 Conference on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA ’92). ACM Press, 1992. Page 63-70.

176

JW98 Ralph Johnson and Bobby Woolf. “Type Object.” In Pattern Languages of Program De-
sign 3. Edited by Robert C. Martin, Dirk Riehle, and Frank Buschmann. Addison-
Wesley, 1998. Page 47-65.

Ken99 Elisabeth A. Kendall. “Role Model Designs and Implementations with Aspect
Oriented Programming.” Unpublished manuscript.

KLM+97 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. “Aspect-Oriented Programming.” In Proceedings of the
1997 European Conference on Object-Oriented Programming (ECOOP ’97). Springer
Verlag, 1997. Page 220-242.

KO96a Bent Bruun Kristensen and Kasper Osterbye. “Roles: Conceptual Abstraction Theory and
Practical Language Issues.” Theory and Practice of Object Systems 2, 3 (1996). Page
143-160.

Lew95 Ted Lewis (editor). Object-Oriented Application Frameworks. Greenwich: Manning,
1995.

LH89 Karl J. Lieberherr and Ian M. Holland. “Assuring Good Style for Object-Oriented Pro-
grams.” IEEE Software 22, 9 (September 1989). Page 38-48.

Lie95 Karl J. Lieberherr. Adaptive Object-Oriented Software. Boston, MA: PWS Publishing
Company, 1995.

LKA+95 David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and
Walter Mann. “Specification and Analysis of System Architecture Using Rapide.” IEEE
Transactions on Software Engineering 21, 4 (April 1995). Page 336-355.

Lop97 Cristina Lopes. D: A Language Framework for Distributed Programming. Ph.D. Thesis.
Boston, MA: Northeastern University, 1997.

LW93a Barbara Liskov and Jeannette Wing. “Specifications and Their Use in Defining Sub-
types.” In Proceedings of the 1993 Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA ’93). ACM Press, 1993. Page 16-28.

LW93b Barbara Liskov and Jeannette Wing. “A New Definition of the Subtype Relation.” In
Proceedings of the 1993 European Conference on Object-Oriented Programming
(ECOOP ’93). LNCS-707. Springer-Verlag, 1993. Page 118-141.

LW94 Barbara H. Liskov and Jeannette M. Wing. “A Behavioral Notion of Subtyping.” ACM
Transactions on Programming Languages and Systems 16, 6 (November 1994). Page
1811-1841.

Mac82 B. J. MacLennan. “Values and Objects in Programming Languages.” ACM SIGPLAN
Notices 17, 12 (December 1982). Page 70-79.

McA95a Jeff McAffer. A Meta-Level Architecture for Prototyping Object Systems. Ph.D. Thesis.
Tokyo, Japan: University of Tokyo, 1995.

McA95b Jeff McAffer. “Meta-level Programming with CodA.” In Proceedings of the 1995 Euro-
pean Conference on Object-Oriented Programming (ECOOP ’95). LNCS-952. Springer-
Verlag, 1995. Page 190-214.

Mey91 Bertrand Meyer. “Design by Contract.” Advances in Object-Oriented Software Engi-
neering. Edited by Dino Mandrioli und Bertrand Meyer. Prentice-Hall, 1991. Page 1-50.

Mey92 Bertrand Meyer. Eiffel. The Language. Prentice-Hall, 1992.

Mey92b Bertrand Meyer. “Applying Design By Contract.” IEEE Computer 25, 10 (October 1992).
Page 40-51.

177

MDEK95 Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. “Specifying Distributed
Software Architectures.” In Proceedings of 5th European Software Engineering Confer-
ence (ESEC ’95). Springer-Verlag, 1995.

Ode98 James J. Odell. Advanced Object-Oriented Analysis and Design Using UML. Cambridge
University Press, 1998.

OKH+95 Harold Ossher, Matthew Kaplan, William Harrison, Alexander Katz, and Vincent
Kruskal. “Subject-Oriented Composition Rules.” In Proceedings of the 1995 Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA ’95).
ACM Press, 1995. Page 235-250.

PN86 Ruben Prieto-Diaz and James M. Neighbors. "Module Interconnection Languages." Jour-
nal of Systems and Software 6, 4 (November 1986): 307-334.

RAB+92 Trygve Reenskaug, Egil P. Andersen, Arne Jorgen Berre, Anne Hurlen, Anton Landmark,
Odd Arild Lehne, Else Nordhagen, Eirik Nêss-Ulseth, Gro Oftedal, Anne Lise Skaar, and
Pâl Stenslet. “OORASS: seamless support for the creation and maintenance of object-
oriented systems.” Journal of Object-Oriented Programming 5, 6 (October 1992). Page
27-41.

RBGM99 Dirk Riehle, Roger Brudermann, Thomas Gross, and Kai-Uwe Mätzel. “Pattern Density
and Role Modeling of an Object Transport Service.” ACM Computing Surveys 31, 2
(June 1999). To appear.

RD99a Dirk Riehle and Erica Dubach. “Working with Java Interfaces and Classes. Part 1.” Java
Report 4, 7 (July 1999). Page 35pp.

RD99b Dirk Riehle and Erica Dubach. “Working with Java Interfaces and Classes. Part 2.” Java
Report 4, 10 (October 1999). Page 34pp

Ree96 Trygve Reenskaug, with Per Wold and Odd Arild Lehne. Working with Objects. Green-
wich: Manning, 1996.

Rie96a Dirk Riehle. “Describing and Composing Patterns Using Role Diagrams.” In Proceedings
of the 1996 Ubilab Conference, Zürich. Edited by Kai-Uwe Mätzel and Hans-Peter Frei.
Konstanz, Germany: Universitätsverlag Konstanz, 1996. Page 137-152. Originally pub-
lished in Proceedings of the 1st International Conference on Object-Orientation in Rus-
sia (WOON ’96). Edited by Alexander V. Smolyaninov and Alexei S. Shestialtynov. St.
Petersburg, Russia: Electrotechnical University, 1996. Page 169-178. See Appendix E for
a pointer to this publication.

Rie96c Dirk Riehle. “Patterns for Encapsulating Class Trees.” In Pattern Languages of Program
Design 2. Edited by John M. Vlissides, James O. Coplien and Norman L. Kerth.
Addison-Wesley, 1996. Page 87-104.

Rie97a Dirk Riehle. A Role-Based Design Pattern Catalog of Atomic and Composite Patterns
Structured by Pattern Purpose. Ubilab Technical Report 97.1.1. Zürich, Switzerland:
Union Bank of Switzerland, 1997.

Rie97c Dirk Riehle. “Composite Design Patterns.” In Proceedings of the 1997 Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA ’97).
ACM Press, 1997. Page 218-228.

Rie97d Dirk Riehle. “Arbeiten mit Java-Schnittstellen und –Klassen (Teil 1 von 2).” Java Spek-
trum 5/97 (September/October 1997). Seite 26-33.

Rie97e Dirk Riehle. “Arbeiten mit Java-Schnittstellen und –Klassen (Teil 2 von 2).”. Java Spek-
trum 6/97 (November/Dezember 1997). Seite 35-43.

178

Rie98 Dirk Riehle. “Bureaucracy.” In Pattern Languages of Program Design 3. Edited by Rob-
ert C. Martin, Dirk Riehle, and Frank Buschmann. Addison-Wesley, 1998. Page 163-186.

Rit97 Antonio Rito Silva. “Framework, Design Patterns, and Pattern Language for Object
Concurrency.” In Proceedings of the 1997 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA ’97).

RS95 Dirk Riehle and Martin Schnyder. Design and Implementation of a Smalltalk Framework
for the Tools and Materials Metaphor. Ubilab Technical Report 95.7.1. Zürich, Switzer-
land: Union Bank of Switzerland, 1995.

RSB+98 Dirk Riehle, Wolf Siberski, Dirk Bäumer, Daniel Megert, and Heinz Züllighoven. “Seri-
alizer.” In Pattern Languages of Program Design 3. Edited by Robert C. Martin, Dirk
Riehle, and Frank Buschmann. Addison-Wesley, 1998. Page 293-312.

RZ95 Dirk Riehle and Heinz Züllighoven. “A Pattern Language for Tool Construction and In-
tegration Based on the Tools and Materials Metaphor.” In Pattern Languages of Program
Design. Edited by James O. Coplien and Douglas C. Schmidt. Addison-Wesley, 1995.
Page 9-42.

RZ96 Dirk Riehle and Heinz Züllighoven. “Understanding and Using Patterns in Software De-
velopment.” Theory and Practice of Object Systems 2, 1 (1996). Page 3-13.

Sch98 Bruno Schäffer. Design and Implementation of Smalltalk Mixin Classes. Ubilab Techni-
cal Report 98.11.1. Zurich, Switzerland: UBS AG, 1998.

SBF96 Steve Sparks, Kevin Benner, and Chris Faris. “Managing Object-Oriented Framework
Reuse.” Computer 29, 9 (September 1996): 52-61.

SG96 Mary Shaw and David Garlan. Software Architecture—Perspectives on an Emerging Dis-
cipline. New Jersey: Prentice Hall, 1996.

Sie96 Jon Siegel. CORBA Fundamentals and Programming. John Wiley & Sons, 1996.

Som98 Peter Sommerlad. “Manager.” In Pattern Languages of Program Design 3. Edited by
Robert Martin, Dirk Riehle, and Frank Buschmann. Addison-Wesley, 1998. Page 19-28.

Str94 Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

Sun96a James Gosling, Frank Yellin, and the Java Team. The Java Application Programming
Interface, Volume 1. Addison-Wesley, 1996.

Sun96b James Gosling, Frank Yellin, and the Java Team. The Java Application Programming
Interface, Volume 2. Addison-Wesley, 1996.

Szy98 Clemens Szyperski. Component Software-Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

Tal95 Taligent Inc. The Power of Frameworks. Addison-Wesley, 1995.

UML97a Rational Software Corporation et al. UML v1.1 Semantics. Santa Clara, CA: Rational
Software Corporation, 1997.

UML97b Rational Software Corporation. UML v1.1 Notation Guide. Santa Clara, CA: Rational
Software Corporation, 1997.

Van97 Michael VanHilst. Role Oriented Programming for Software Evolution. Ph.D. Thesis.
Seattle, WA: University of Washington, 1997.

Vli98 John Vlissides. Pattern Hatching. Addison-Wesley Longman, 1998.

179

VN96 Michael VanHilst and David Notkin. “Using Role Components to Implement Collabora-
tion-Based Designs.” In Proceedings of the 1996 Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA ’96). ACM Press, 1996.
Page 359-369.

WG95 André Weinand and Erich Gamma. “ET++ A Portable Homogeneous Class Library and
Application Framework.” In Object-Oriented Application Frameworks. Edited by Ted
Lewis. Greenwich: Manning, 1995. Page 154-194.

WGM89 André Weinand, Erich Gamma, and Rudolf Marty. “Design and Implementation of
ET++, a Seamless Object-Oriented Application Framework.” Structured Programming
10, 2 (Juni 1989): Page 63-87.

Wir82 Wirth, N. (1982). Programming in Modula-2. Berlin, Heidelberg: Springer-Verlag.

WJS95 Roel Wieringa, Wiebren de Jonge, and Paul Spruit. “Using Dynamic Classes and Role
Classes to Model Object Migration.” Theory and Practice of Object Systems 1, 1 (1995)
Page 61-83.

Woo98 Bobby Woolf. “Null Object.” In Pattern Languages of Program Design 3. Edited by
Robert C. Martin, Dirk Riehle, and Frank Buschmann. Addison-Wesley, 1998. Page 5-18.

WSP+92 Peter Wegner, William Scherlis, James Purtilo, David Luckham and Ralph Johnson.
“Object-Oriented Megaprogramming.” In Proceedings of the 1992 Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA ’92). ACM
Press, 1992. Page 392-396.

WWW90 Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener. Designing Object-Oriented
Software. Prentice Hall, 1990.

WZ88 Peter Wegner and Stanley B. Zdonik. “Inheritance as an Incremental Modification
Mechanism or What Like Is and Isn’t Like.” In Proceedings of the 1988 European Con-
ference on Object-Oriented Programming (ECOOP ’88). LNCS 322. Springer-Verlag,
1998. Page 55-77.

180

B
Glossary

Class

A class is the definition of a (possibly infinite) set of objects, called its instances. A class defines a
non-empty set of role types, a composition function, and a class type. The composition function,
applied to all role types, results in the class type.

See Definition 3-16 and 3-2.

Class, built-on

A built-on class of a framework is the class of a built-on object. It is connected to the framework
through one or more role models.

See Definition 4-8.

Class, extension

An extension class of a framework is a subclass of an extension-point class of a framework.

See Definition 4-13.

Class, extension-point

An extension-point class is a framework class that may be subclassed by framework-external
classes.

See Definition 4-10.

182

Class, use-client

A use-client class of a framework is the class of a use-client object. It is connected to the frame-
work through one or more role models.

See Definition 4-3.

Class set, built-on

The built-on class set of a framework is the set of all built-on classes of the framework.

See Definition 4-9.

Class set, extension-point

The extension-point class set of a framework is the set of all extension-point classes of the frame-
work.

See Definition 4-11.

Class model

A class model is a set of classes and a set of role models. The classes relate to each other by in-
heritance and object relationship descriptions between role types. The class relationship graph must
be non-partitioned.

See Definition 3-20 and 3-11.

Composition function

A composition function composes types. It is used as part of a class definition, where it composes
the role types of a class to form the class type.

See page 37.

Framework

A framework is a class model, together with a free role type set, a built-on class set, and an exten-
sion-point class set.

See Definition 4-1.

Framework extension

A framework extension is a set of classes. Each class is either an extension class of the framework
or a class that is transitively connected with at least one extension class through a role model.

See Definition 4-14.

Framework extension, domain-specific

A domain-specific framework extension is a framework extension that is not a framework, but that
can be used by different applications in the same domain.

See Definition 4-15.

183

Framework extension, application-specific

An application-specific framework extension is a framework extension that is not a framework and
that can be used by one specific application only.

See Definition 4-16.

Inheritance

An inheritance is a pair of classes (X, Y) such that any instance of class Y can be substituted in a
context where an instance of class X is expected.

See Definition 3-9.

Object

An object is an opaque runtime entity of a system that provides state and operations to query and
change that state. An object has a lifecycle: It is created, may change over time, and is possibly
deleted. Objects can be identified unambiguously; identity is an intrinsic property of every object.

See Definition 3-1.

Object, built-on

A built-on object of a framework is a framework-external object that a framework object makes use
of in an object collaboration task.

See Definition 4-7.

Object, use-client

A use-client object of a framework is a framework-external object that makes use of one or more
framework objects in an object collaboration task.

See Definition 4-2.

Object aggregation

An object aggregation is a pair of objects (x, y), stating that an object x aggregates an object y as a
part of it. To aggregate an object means to control it, not only to make use of it, but to determine its
lifetime and accessibility as well.

See Definition 3-7.

Object aggregation description

An object aggregation description is a pair of types (X, Y) that determines possible runtime object
aggregations. An aggregation between two objects (x, y) conforms to the aggregation description if
x is of type X or a subtype of X, and if y is of type Y or a subtype of Y.

See Definition 3-8.

Object association

An object association is a pair of objects (x, y), stating that an object x holds a reference to another
object y of which it may or may not make use.

See Definition 3-5.

184

Object association description

An object association description is a pair of types (X, Y) that determines possible runtime object
associations. An association between two objects (x, y) conforms to the association description if x
is of type X or a subtype of X, and if y is of type Y or a subtype of Y.

See Definition 3-6.

Object collaboration

An object collaboration is a set of objects that relate to each other by object relationships. An ob-
ject collaboration is said to be valid if it conforms to a class model.

See Definition 3-10.

Object collaboration task

An object collaboration task is an object collaboration and a set of roles objects play in the collabo-
ration. The object relationship graph must be non-partitioned.

See Definition 3-17.

Object system.

An object system is an object collaboration.

See page 31.

Role

A role is an observable behavioral aspect of an object.

See Definition 3-12.

Role constraint

A role constraint is a value from the set {role-implied, role-equivalent, role-prohibited, role-
dontcare}. For every given pair of role types (R, S) from a role model one such value is defined.

See Definition 3-19.

Role-dontcare constraint

A role-dontcare value for a pair of role types (R, S) defines that an object playing a role r of role
type R has no constraints with respect to another role s of role type S within the given collaboration
task. The role s may or may not be available together.

See page 38.

Role-equivalent constraint

A role-equivalent value for a pair of role types (R, S) defines that an object playing a role r defined
by role type R is always capable of playing a role s defined by role type S, and vice versa. That is,
role r and role s imply each other. This relationship is symmetric and transitive.

See page 38.

185

Role-implied constraint

A role-implied value for a pair of role types (R, S) defines that an object playing a role r defined by
role type R is always capable of playing a role s defined by role type S. That is, role r implies role
s. This relationship is transitive.

See page 38.

Role-prohibited constraint

A role-prohibited value for a pair of role types (R, S) defines that an object playing role r defined
by role type R may not play role s defined by role type S within a given collaboration task. That is,
role r prohibits role s for the task. This relationship is symmetric and transitive.

See page 38.

Role model

A role model is a set of role types that relate to each other by object relationship descriptions and
role constraints. The role type relationship graph must be non-partitioned.

See Definition 3-18.

Role model, free

A free role model of a framework is a framework-defined role model that has one or more free role
types.

See Definition 4-5.

Role type

A role type is a type that defines the behavior of a role an object may play. It defines the operations
and the state model of the role, as well as the associated semantics.

See Definition 3-13.

Role type, callback

A callback role type is a free role type of a framework that has a non-empty set of operations. It
may be picked up by higher-layer classes. Callback role types are the role modeling equivalent of
callback interfaces as used by traditional coupling mechanisms.

See Definition 4-12.

Role type, free

A free role type of a framework is a role type of a framework-defined role model that may be
picked up by use-client classes by putting it into their role type sets.

See Definition 4-4.

Role type, no-operation

A no-operation role type is a role type that defines no operations.

See Definition 3-14.

186

Role type, no-semantics

A no-semantics role type is a no-operation role type that defines neither state nor behavior.

See Definition 3-15.

Role type set, free

The free role type set of a framework is the set of all free role types of a framework.

See Definition 4-6.

Value

A value is an atomic entity from the abstract and invisible universe of values. A value cannot be
perceived directly, but only through occurrences of its representations. The representations are in-
terpreted by means of interpretation functions. These interpretation functions return further (occur-
rences of representations of) values; they do not change the value.

See Definition 3-3.

Value type

A value type is a type that specifies a set of values together with the interpretation functions appli-
cable to representations of members of this set.

See Definition 3-4.

C
Notation Guide

This appendix describes the graphical notation used in the diagrams of this dissertation. The notation
uses diagrammatic UML syntax where possible, and adds to it where necessary.

C.1 Classes and role types
A class is depicted as a rectangle, with the class name set in bold font at the top of the rectangle. If the
class name is set in Italics, the class is abstract. Class and class type is used synonymously.

A role type is depicted as an oval. The name of the role type is prominently centered in the oval. Set
below it, in parentheses and a smaller font, is the name of the role model the role type is defined by.

Figure C-1 depicts an example class and several example role types. Here, a class ResourceService
provides the three role types Service, Provider, and Singleton of the role models ResourceService and
RSSingleton, respectively. Thus, the qualified name of the role types is ResourceService.Service,
RSSingleton.Provider, and RSSingleton.Singleton.

ResourceService

Service
(ResourceService)

Provider
(RSSingleton)

Client
(ResourceService)

Client
(RSSingleton)

Singleton
(RSSingleton)

Figure C-1: Example class with role types.

188

Figure C-1 lets us distinguish between instance-level role types and class-level role types. An in-
stance-level role type (a “regular” role type) is depicted as the aforementioned oval. An instance-level
role type defines behavior that instances of a class conform to. A class-level role type is depicted as a
rectangle (RSSingleton.Provider in Figure D-1). A class-level role type defines behavior that the class
object representing the class conforms to.

Finally, Figure D-1 lets us distinguish between role types that have operations and role types that have
no operations (still, expected behavior may be defined for these no-operation role types). A no-op role
type is depicted with a gray mark in the upper right corner. Examples are the ResourceService.Client,
the RSSingleton.Client, and the RSSingleton.Singleton role types. This property applies to instance-
level and class-level role types alike.

Classes may relate to each other using class inheritance. Figure C-2 shows how the ResourceService
class inherits from an abstract Service class (is a subclass of it).

ResourceService

Service

Figure C-2: Class inheritance.

The arrow inheritance symbol in Figure D-2 is taken from UML. See Chapter 3 for a discussion of the
semantics of class inheritance in the context of role modeling.

C.2 Object relationships
Object relationship descriptions are relationships between types that constrain how objects conforming
to these types may reference each other at runtime. Object relationship descriptions only relate the
same kind of types with each other: class types with class types and role types with role types. Also,
when connecting role types, object relationship descriptions are constrained to connect only role types
of the same the role model.

Object relationship descriptions are depicted as connections between types. All relationship descrip-
tions can be annotated with further information like direction and cardinality. Their meaning is taken
from UML.

Figure C-3 shows three object relationship descriptions between role types as they may occur in a role
model.

189

Service
(SimpleService)

Service
(CallbackService)

Client
(CallbackService)

Service
(ServiceManager)

a)

b)

c) 0..*

0..*

Manager
(ServiceManager)

Client
(SimpleService)

Figure C-3: Object relationships in role models

These three cases have the following meaning:

a) The arrow between the Client role type and the Service role type depicts a unidirectional use-
relationship between an object playing the Client role and an object playing the Service role.

b) The line between the Client role type and the Service role type depicts a bi-directional use-
relationship between objects, each of which plays one of the roles.

c) The diamond at the start of the arrow indicates ownership of the object pointed at, and the star at
the end of the arrow indicates a cardinality of many (following UML rules).

The scoping of the object relationship descriptions by a role model or class model is important. No
role type may relate to a role type from another role model by an object relationship description. See
Chapter 3 for a discussion of how classes and role types relate to each other with respect to object re-
lationship descriptions.

C.3 Class and role models
A class model is a set of interrelated classes, tied together by class inheritance and object relationship
descriptions. A role model is a set of role types, tied together by role constraints (see below) and ob-
ject relationship descriptions.

Figure C-4 shows three example role models, one binary, two ternary. The role model name is set be-
low the role type name. The role model name qualifies the role type name so that role types with the
same name, for example the three Client role types, can be distinguished.

Service
(Service)

Starter
(Starter)

Manager
(ChainedStarter)

Element
(ChainedStarter)

Service
(Starter)

Client
(Service)

Client
(Starter)

Client
(ChainedStarter)

0..*

a)

b)

c)

Figure C-4: Three example role models.

Figure C-5 shows one class model, consisting of three classes, and three example role models (from
above).

190

Starter

ChainedStarter

Service

0..*

Service
(Service)

Starter
(Starter)

Manager
(ChainedStarter)

Element
(ChainedStarter)

Service
(Starter)

Client
(Service)

Client
(Starter)

Client
(ChainedStarter)

Figure C-5: Example class model.

The example class model does not show its free role types. Free role types are color-coded with a gray
background (see the section on frameworks below).

C.4 Role constraints
Role constraints are values that define how roles played according to two role types from the same
role model may come together in one object. For any given pair of role types, there is one role con-
straint value. The default value is role-dontcare (see below).

Role constraints are depicted as connections between role types. Figure C-6 shows the four different
role constraints that may occur in a role model.

Parent
(Bureaucracy)

Root
(Bureaucracy)

Subject
(Bureaucracy)

Observer
(Bureaucracy)

a)

b)

c)

d)

Subject
(Bureaucracy)

Node
(Bureaucracy)

Observer
(Bureaucracy)

Parent
(Bureaucracy)

Figure C-6: Role constraints in a role model.

These four cases have the following meaning:

a) Role-implied. The white-headed unidirectional arrow depicts a role-implied role constraint. The
role constraint value of (Parent, Node) is role-implied, the role relationship value of (Node, Par-
ent) is role-dontcare.

b) Role-equivalent. The white-headed bi-directional arrow depicts a role-equivalent role constraint.
The role constraint value of both (Subject, Root) and (Root, Subject) is role-equivalent.

c) Role-prohibited. The bar-headed bi-directional arrow depicts a role-prohibited role constraint. The
role constraint value of both (Child, Root) and (Root, Child) is role-prohibited.

191

d) Role-dontcare. The missing of a symbol depicts a role-dontcare role constraint. The role constraint
value of both (Client, RootClient) and (RootClient, Client) is role-dontcare.

Role constraints connect role types within one role model. A role-prohibited constraint is scoped by
the runtime object collaboration task. It is possible for an object to play roles according to two differ-
ent role types (even if there is a role-prohibited constraint between them) given that these roles are
played in different role model instances, that is different object collaboration tasks.

C.5 Role model shorthands
Some role model compositions keep recurring throughout the examples. The primary examples are
Object Creation and Singleton Access. Therefore, the dissertation uses shorthands to conveniently rep-
resent these recurring compositions as one single role model. Such a shorthand is much like a template
in that it needs to be applied and adapted to a specific situation.

Figure C-7 shows an example of the applied Object Creation shorthand, here for the creation of a Re-
sourceService instance.

ResourceService

Creator
(RSCreation)

object
creation

Client
(RSCreation)

Product
(RSCreation)

Figure C-7: Object Creation shorthand, applied to the ResourceService example.

Figure C-8 shows the expanded form of the Object Creation shorthand.

ResourceService

Creator
(RSCreation)

Client
(RSInitialization)

Client
(RSCreation)

Product
(RSCreation)

Target
(RSInitialization)

Figure C-8: Expanded form of the applied Object Creation shorthand.

Figure C-9 shows an example of the Singleton Access shorthand, here for the access to a single Re-
sourceService instance.

ResourceService

Provider
(RSSingleton)

singleton
access

Client
(RSSingleton)

Singleton
(RSSingleton)

Figure C-9: Singleton Access shorthand, applied to the ResourceService example.

Figure C-10 shows the expanded form of the Singleton Access shorthand.

192

ResourceService

Provider
(RSSingleton)

Client
(RSSingleton)

Product
(RSCreation)

Singleton
(RSSingleton)

Creator
(RSCreation)

object
creation

Client
(RSCreation)

Figure C-10: Expanded form of the Singleton Access shorthand.

Another candidate for a shorthand is the composition of a Manager role model, in which a Manager
object maintains a dictionary of Elements, with the lookup functionality of a dictionary and its key
objects.

Composite (compound) pattern applications [Rie97c] are not a suitable subjects for shorthands, be-
cause it is important to see the constituting role models. Shorthands should be used only for trivial role
model compositions.

If non-trivial role model compositions are needed frequently and lead to cluttering up the figures, an
explicit semantic construct for composing role models can be introduced and given a diagrammatic
representation.

C.6 Frameworks
Frameworks are class models with well-defined boundaries. A visual border with the framework’s
name attached to it surrounds the framework classes. Also, free role types of the framework are color-
coded in gray.

Figure C-11 shows a simple framework based on the Service and Starter class model from above.

Service
framework

Starter

ChainedStarter

Service

0..*

Service
(Service)

Starter
(Starter)

Manager
(ChainedStarter)

Element
(ChainedStarter)

Service
(Starter)

Client
(Service)

Client
(Starter)

Client
(ChainedStarter)

Figure C-11: Example framework.

The framework comprises the Service, Starter, and ChainedStarter classes. It offers three free role
types for client classes to pick up: Service.Client, Starter.Client, and ChainedStarter.Client. The color-

193

coding of these free role types is maintained, even if they are assigned to classes in a client context,
because they are still free for other clients to pick them up.

194

D
Design Patterns

This appendix describes several design patterns that are used in the main body of the dissertation using
a role model form. The patterns are essentially the same as found in their original documentation, ex-
cept that the role model form portrays them in a different light. The use of role models lets us more
flexibly assign role types to classes than the class-based form allows us to do. While the class dia-
grams of the patterns frequently might look simpler than the role model diagrams, this is not the case.
The complexity of a pattern is always the same, independently of its presentation form.

The pattern descriptions in this appendix have the following properties:

• The descriptions of the patterns are incomplete. They merely serve as a reminder for those who
forgot or do not know a specific pattern under the given name so they can quickly look it up. For a
more detailed description, references are provided.

• The patterns are illustrated rather than rigidly defined. There is no design pattern notation behind
the pattern descriptions except than an intuitive understanding about what the role model illustra-
tion might communicate to developers regarding the pattern instantiation.

• None of the descriptions is to be taken as a rigid definition. (See the discussion of pattern vs. tem-
plate in Chapter 3). Role models are more flexible than class model and suggest a wider applica-
tion [Rie96a], but even they cannot encompass all possible design templates.

In the diagrams, some role types and object relationship descriptions are grayed out. These role types
are required in an instantiation of a pattern, but are not considered to be an integral part of the core
pattern role model illustration. The primary example of such a grayed-out role model is the role type
pair (Client, Object) that simply states that an object provides some domain functionality to a Client.

196

D.1 Abstract Factory
The Abstract Factory pattern centralizes the creation of objects from a family of products in a Factory
object. A Client requests new Product objects from a Factory object. The Factory object ensures con-
sistency among a family of Product objects and hides the details of the object creation process.

Product2

Product3

Product1

FactoryClient

Figure D-1: Role model of the Abstract Factory pattern.

A class-based description of this pattern can be found in [GHJV95].

D.2 Adapter
The Adapter pattern adapts an existing object to a new use-context by means of an intermediate
Adapter object. A Client uses the Adapter operations only, and the Adapter implements them in terms
of the domain functionality of the Adaptee.

Adapter

ObjectClient

Client Adaptee

Figure D-2: Role model of the Adapter pattern.

A class-based description of this pattern can be found in [GHJV95].

D.3 Bridge
The Bridge pattern splits the implementation of a domain concept into an Abstraction and an Imple-
mentor object so that both can be varied independently. The Abstraction provides the primary domain
functionality, and the Implementor provides the implementation primitives all variations of the Ab-
straction can be implemented by. The Client makes use only of the Abstraction. The Abstraction owns
its Implementor, uses its operations for its own implementation, and hides it from the Client.

ImplementorAbstractionClient

Figure D-3: Role model of the Bridge pattern.

197

A separate Client (not shown in the figure) configures the Abstraction with its Implementor. A com-
mon type of Client is an Abstract Factory that returns a preconfigured Bridge upon Client request.

A class-based description of this pattern can be found in [GHJV95].

D.4 Chain of Responsibility
The Chain of Responsibility pattern determines the target object of a client request dynamically by
passing the request along a chain of objects. Each object in the chain may decide whether to execute,
drop, or pass on the request. A Predecessor forwards the request to its Successor.

Tail

Predecessor Successor
0..1 0..1

ObjectClient

Client

Client

Figure D-4: Role model of the Chain of Responsibility pattern.

Using an object chain this way lets us configure the recipient of the request dynamically. A separate
client configures the chain of objects.

A class-based description of this pattern can be found in [GHJV95].

D.5 Class Object
The Class Object pattern provides functionality common to all objects of a class in one Class object. A
Class object can be asked for meta-information about any of its Instance objects. In contrast to a Type
object, the Class object provides not only operations to inspect its Instances and provide information
about it, but also functionality to create and change its Instances.

Instance ClassObject
0..*

ObjectClient

Client

Figure D-5: Role model of the Class Object pattern.

Type Object is one element of the pattern triple Metaobject, Type Object, and Class Object. The dis-
tinction between Class Object and Type Object is done pragmatically. Class Objects provide imple-
mentation information about its Instances and they can manipulate and create Instances. Type Objects

198

provide application domain specific information rather than implementation information; their imple-
mentations may be heterogeneous, and they cannot manipulate their Instances.

To my knowledge, there is no commonly known class-based description of the pattern. However, any
major object-oriented system provides an implementation of this pattern.

D.6 Composite
The Composite pattern determines how to build a hierarchy of objects. Any object in the hierarchy is a
Child, or a Parent, or both. A Child may receive a Parent object, and a Parent object may receive or
drop some Child objects. The Child and Parent role types serve to configure and maintain the hierar-
chy. A Client configures a Parent with its Child objects.

Root

Child Parent
0..* 0..1

ObjectClient

Client

Client

Figure D-6: Role model of the Composite pattern.

A class-based description of this pattern can be found in [GHJV95].

D.7 Decorator
The Decorator pattern lets us transparently add functionality to an existing object through object com-
position. A Core object is wrapped by a Decorator object. The Client makes use of both the Core and
the Decorator without seeing to different objects.

Core Decorator

ObjectClient

Client

Figure D-7: Role model of the Decorator pattern.

A class-based description of this pattern can be found in [GHJV95].

199

D.8 Factory Method
The Factory Method pattern puts the creation of an object in method of its own that can be varied in-
dependently from the Client using the method. The Factory Method is provided by a Creator object
that returns a Product object upon Client request.

Creator ProductClient

Figure D-8: Role model of the Factory Method pattern.

A class-based description of this pattern can be found in [GHJV95].

D.9 Manager
The Manager pattern puts the management of some Elements into a Manager object so that Element
management gets independent of the Client and the Elements. Clients request Elements from the Man-
ager. The Manager owns the Elements. It creates, provides, and deletes them.

0..*
ManagerClient Element

Figure D-9: Role model of the Manager pattern.

In [Som98], Sommerlad describes a class-based variant of this pattern, also called Manager. Sommer-
lad’s Manager requires the set of Elements to be homogeneous, while the definition of Manager here
accepts a heterogeneous collection of Elements.

D.10 Mediator
The Mediator pattern centralizes the communication of a set of Colleague objects in one Mediator ob-
ject. The Colleagues do not communicate with each other directly, but only through the Mediator. This
reduces communication complexity from square(n) to n. It facilitates the introduction and removal of a
new Colleague object without affecting the other Colleagues.

Colleague1 Colleague3Colleague2

Mediator

Figure D-10: Role model of the Mediator pattern.

A class-based description of this pattern can be found in [GHJV95].

200

D.11 Metaobject
The Metaobject pattern separates the domain-specific functionality of an object from the technical
procedure of executing this domain functionality. Clients send requests to the Metaobject for execu-
tion on a specific BaseObject. The Metaobject defines the procedures for executing incoming requests,
and the BaseObject provides the functionality to invoke the domain-specific operations. The Metaob-
ject typically deals with issues like request queuing and synchronization, and the BaseObject provides
a dynamic invocation interface for calling the domain-specific operations.

MetaObject
1 1

ObjectClient

Client BaseObject

Figure D-11: Role model of the Metaobject pattern.

The configuration of the Metaobject can be complex (see Chapter 6 for an example). Metaobjects are
part of a metalevel architecture that represents the overall (conceptual and/or technical) framework for
handling metalevel issues.

Metaobject is one of the pattern triple Metaobject, Type Object, and Class Object.

To my knowledge, there is no commonly known class-based description of the pattern. However,
every object-oriented system based on an explicit metalevel architecture is likely to feature an instance
of this pattern.

D.12 Null Object
The Null Object pattern serves to provide a null implementation of a domain concept. The null imple-
mentation provides null behavior, which is the behavior assumed to be executed if no object were pre-
sent at all. The pattern lets developers set an object reference to the null object rather than to a null
reference and avoids cluttering the client code with checks whether the reference is null or not.

ObjectClient

Figure D-12: Role model of the Null Object pattern.

In [Woo98], Woolf describes the Null Object pattern. Because it is only about implementation, the
pattern cannot be expressed well using role modeling.

201

D.13 Object Registry
The Object Registry pattern centralizes access to a set of Element objects in one Registry object. Cli-
ents register and unregister Elements at the Registry giving them convenient names for later retrieval.
Such a Registry is typically a thread-local or process-local Singleton.

0..*
RegistryClient Element

Figure D-13: Role model of the Object Registry pattern.

The Object Registry pattern is to be distinguished from the Value Registry pattern (not documented
here). An Object Registry handles objects, and a Value Registry handles values. Clients of an Object
Registry have to be aware of possible side-effects, while clients of a Value Registry do not have to do
so.

D.14 Observer
The Observer pattern decouples a set of Observers from a Subject. It is used to maintain state depend-
encies between the Observers and their Subject. In case of a state change, the Subject sends out an
event to notify its Observers about the change. The Subject does not rely on any specific type of Ob-
server, but uses a common and minimal Observer protocol only. A Client configures the Subject with
its Observers (Client and Observer object may well be the same).

ObjectClient

Observer Subject
0..*

Client

Figure D-14: Role model of the Observer pattern.

In Java, the Observer pattern takes on the form of EventListeners.

A class-based description of this pattern can be found in [GHJV95].

D.15 Product Trader
The Product Trader pattern separates the creation of a Product object from the Client requesting it by
putting the creation process into a Trader object. Clients request new Products from the Trader using a
specification of the Product (rather than naming its class). The Trader uses the specification to select
an element from a set of Elements. Each of the Elements can act as a Creator for the Product.

When asked for a Product, the Trader selects an Element based on the specification provided by the
Client. The Trader then acts as a Client of the Element that acts as the Creator for the new Product

202

object. The Trader/Client object asks the Element/Creator object for a new Product, which is then re-
turned to the Client.

Trader

Creator

Product

0..*

Client

Client Element

Product

Figure D-15: Role model of the Product Trader pattern.

In [BR98], Bäumer and Riehle present a class-based description of this pattern.

D.16 Property List
The Property List pattern makes a Provider object provide a generic and extensible set of Properties to
Clients. A Client asks a Provider object about its Properties. Properties are accessed using a naming
scheme, for example simple strings, and generic get and set operations rather than through property-
specific operations. The Provider defines which Properties it offers. Every implementation of a Pro-
vider may provide its own set of Properties. Properties may even be added and removed at runtime.

0..*
ProviderClient Property

ObjectClient

Figure D-16: Role model of the Property List pattern.

In [Rie97a], Riehle describes the pattern in more detail using role modeling.

D.17 Prototype
The Prototype pattern lets Clients create complex Product objects by cloning a Prototype object. Prod-
ucts are copies of the Prototype and reflect its possibly complex object configuration. Clients request a
copy of the Prototype, which they receive as a new Product object. Prototypes serve as representatives
of one or several complex objects and can be handled generically.

203

Client

ObjectClient

Prototype Product

Figure D-17: Role model of the Prototype pattern.

A class-based description of this pattern can be found in [GHJV95].

D.18 Role Object
The Role Object pattern transparently attaches Role objects to a Core object. The Core represents an
important domain concept, and the Roles represent some domain-specific extension of the Core con-
cept. Clients make use both of the Roles and the Core. The Core manages its Roles and provides them
to a Client upon request. Roles may be retrieved from the Core using a simple naming scheme, for
example strings.

0..*
Provider

Role2Role1

ObjectClient

Client Client

Client Role

Figure D-18: Role model of the Role Object pattern.

The Core may be configured with Role objects in many different ways, for example during configura-
tion time from configuration data or during execution time through dedicated clients.

In [BRSW00], Bäumer et al. present a class-based description of this pattern.

D.19 Type Object
The Type Object pattern centralizes common information about a set of Instance objects in a Type
Object that is shared by all Instances. Clients ask the Type Object of an Instance for information about
the Instance. This information may also be directly provided by an Instance, but it will be imple-
mented then by asking the Type Object. Using Type Objects, otherwise redundant information about
common properties of all Instances is provided in a single place, the Type Object.

204

Instance TypeObject
0..*

Object

Client

Client

Figure D-19: Role model of the Type Object pattern.

Type Object is one of the pattern triple Metaobject, Type Object, and Class Object. The distinction
between Class Object and Type Object is done pragmatically. Class Objects provide implementation
information about its Instances and they can manipulate and create Instances. Type Objects provide
application domain specific information rather than implementation information; their implementa-
tions may be heterogeneous, and they cannot manipulate their Instances.

In [JW98], Johnson and Woolf present a class-based description of this pattern.

D.20 Serializer
The Serializer pattern reads Readable objects from a Reader and writes Writable objects to a Writer.
The Reader reads the object information from a specific backend, and the Writer writes the object in-
formation to a specific backend. Backends vary with Reader/Writer implementations. The Serializer
pattern is used to serialize objects for different purposes like making them persistent, marshalling and
unmarshalling them, and debugging them.

Readable and Reader as well as Writable and Writer objects collaborate recursively. A Readable reads
all of its attributes from a Reader. For attributes that are Readable object references, the Reader to cre-
ates the Readable and then tells it to read its attributes from it, the Reader. Similarly, a Writable writes
its attributes to a Writer that in turn tells a Writable attribute to write its attributs on it, the Writer.
Primitive value types like integer and string attributes end the recursive descent.

Reader

Writer

Readable

Writable

Figure D-20: Role model of the Serializer pattern.

The Serializer pattern can be viewed as the repeated specialized composition of the Visitor pattern.

In [RSB+98], Riehle et al. present a class-based description of this pattern.

D.21 Singleton
The Singleton pattern serves to ensure that there is exactly one instance of an object, the Singleton, in
a given operation context, and to provide a central convenient access point to it. Historically, the op-

205

eration context is the process, but it could be a thread as well. A Client requests the Singleton from a
Provider. If necessary, the Provider creates the Singleton on demand.

ProductCreator

Provider

Object

Client Singleton

Client

Client

Figure D-21: Role model of the Singleton pattern.

Because the combination of an applied Singleton role model with an object creation role model of
Client, Creator, and Product role types ocurrs frequently, the dissertation uses a shortcut for it.

Provider

Object

Client Singleton

Client

singleton
access

Figure D-22: Shortcut role model of the Singleton pattern.

A class-based description of this pattern can be found in [GHJV95].

D.22 Specification
The Specification pattern provides descriptive elements about an object to a client for use in object
selection based on specifications. A Client requests a Specification from a Provider. The Specification
describes one or several properties of the Provider. Typically, the Specification can provide a unique
key to a client that is computed based on the properties described by the Specification and that distin-
guishes the Specification from Specifications of other Providers.

Specification

KeyProvider

Provider

Client

Client

Figure D-23: Role model of the Specification pattern.

In [Rie96c], Riehle describes the use of the Specification pattern in the context of class selection and
object creation (also known as trading), and in [EF97], Evans and Fowler describe several patterns that
show how to define and compose complex specifications.

206

D.23 State
The State pattern serves to split a large state space of an object into several distinct parts to ease the
object’s implementation, to manage the state space more easily, and to extend it more easily. An Ob-
ject providing domain functionality to a Client acts as the Context for a set of State objects. The Con-
text forwards Client requests to one State object, which implements the requested behavior.

At any given time, exactly one State object is active, representing the subspace of the overall state
space of the object the current state vector is in. If state changing operations cause the state vector to
leave the current subspace, another State object becomes active, representing the correct subspace. A
State object implements the behavior according to the rules of the subspace it represents.

State

Object

0..*
Context

Client

Figure D-24: Role model of the State pattern.

A class-based description of this pattern can be found in [GHJV95].

D.24 Strategy
The Strategy pattern serves to configure a domain object with an instance from a family of algorithms,
rather than hard-coding any specific algorithm in the domain object. The Strategy object encapsulates
the algorithm, and is set to its Context by a Client. Whenever the domain object has to execute the al-
gorithm it acts as the Context of the Strategy and delegates the task of performing the algorithm to it.

StrategyContext

Object

Client

Client

Figure D-25: Role model of the Strategy pattern.

A class-based description of this pattern can be found in [GHJV95].

D.25 Visitor
The Visitor pattern serves to extend an existing object structure with new external algorithms. The
different object types from the structure are represented as different Node role types. Common to all
objects is the Element role type. A Visitor object represents a new external algorithm. For each of its
Node type attributes, the Element dispatches on a Visitor for the particular Node type. The Visitor can
then execute the behavior associated with that particular Node type.

207

Because Node objects can always act as Elements, a Visitor may recursively descent into the object
structure (if it is a hierarchy). An Element dispatches on an a Visitor for a given Node type attribute,
and the Visitor calls on the Node type attribute to dispatch back to the Visitor on the Node type’s at-
tributes. Primitive value types and objects that are not Elements end the recursive descent.

Visitor Node2

Node3

Node1

Element

Client

Figure D-26: Role model of the Visitor pattern.

A class-based description of this pattern can be found in [GHJV95].

208

E
Pointers to
Further Material

This appendix provides pointers to information referred to in this work.

The following page provides the most recent pointers to all of the materials listed below:

• Index page: http://www.riehle.org/diss/index.html

At the time of writing this dissertation, the original information can be found at:

• JHotDraw 5.1: http://members.pingnet.ch/gamma/JHD-5.1.zip

• JHotDraw 5.1 tutorial: http://www.eos.dk/jaoo/presentations/index.html

An index to my own publications referenced in Appendix A can be found at:

• Publication index: http://www.riehle.org/papers/index.html

210

Curriculum Vitae

Name: Dirk Riehle

Nationality: xxxxxxxxx

Date of birth: xxxxxxxxx

xxxx-xxxx: xxx.

xxxx-xxxx: Matthias-Claudius-Gynmasium (high school), Hamburg, Germany.

1988-1991: University of Hamburg, Germany. Physics studies, Vordiplom.

1988-1995: University of Hamburg, Germany. Computer science studies, Dipl.-Inform.

1995-1996: UBS AG, Corporate Clients IT division, Zürich, Switzerland. Architect and developer.

1996-1999: UBS AG, Ubilab, Zurich, Switzerland. Researcher, architect, and developer.

1997-1999: ETH Zurich, Switzerland. Dissertation, supervised by Prof. Dr. Thomas R. Gross.

1999: Credit Suisse, Data Warehousing, Zurich, Switzerland. Software architect.

1999-current: SKYVA International, Cambridge, MA, and Mannheim, Germany. Software developer.

212

