
In: Pattern Languages of Program Design. Edited by James O. Coplien and Douglas Schmidt.
Reading, Massachusetts: Addison-Wesley, 1995. Pages 9-42.
Copyright © 1995 Dirk Riehle and Heinz Züllighoven. All Rights Reserved.

A Pattern Language for Tool Construction and Integration
Based on the Tools and Materials Metaphor

Dirk Riehle and Heinz Züllighoven

{riehle, zuelligh}@informatik.uni-hamburg.de
University of Hamburg, Dept. of Computer Science, Software Engineering Group

Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany

1 Background and Motivation

Why do people prefer to use certain software systems and why do they have problems using others?
What is the quality within certain software that makes people soon feel familiar using it and lets them
work efficiently? These are questions that we, like a lot of people who develop and use application
systems in their everyday work, asked ourselves.

We believe that the key to this quality (in the sense of [Pir74]) is found in systems that allow
people to work according to their qualification and needs while using their skills and competence.

In order to develop software with this quality we, as a group, have put together many of the
things which have proved useful in software engineering over the last decades and have integrated
these methods and techniques into a unifying approach – the Tools and Materials Metaphor [BCS92,
BZ92]. It has guided us and other developers during analysis and design and has helped to envision
and finally build systems of quality.

The Tools and Materials Metaphor is an approach with a specific underlying view of human
work:

 • People have the necessary competence and skills for their work.
 • There is no need to define a fixed work flow, because people know what they do and can cope

adequately with changing situations.
 • People should be able to decide on their own how to organize their work and their (software)

environment according to their tasks.

We have found that software developed with this goal in mind makes people feel comfortable in
using the system while improving both the working process and its outcome. This holds at least in
the field we are familiar with, which is work in office-like environments and workshops.

But why “Tools and Materials”? From the long tradition of craftsmanship we have learned that
human work has often found a physical embodiment through tools that craftsmen use to work on
materials. We have taken this basic notion as a starting point for understanding what tools and
materials are and how we can extend this concept to software tools and materials. Thereby we try to
bridge the gap between the “soft” social requirements and a “hard” software system.

The term Tools and Materials Metaphor characterizes our overall approach. We explain the
approach and its underlying idea by using a pattern language. We start by outlining this language on
its “highest” conceptual level which we call design metaphors. Design metaphors are Tool, Material,
Aspect and Environment, each representing a different but related concept. We then present the next
lower level of abstraction which are so-called design patterns for the implementation of the

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 2 of 22

metaphors and we show how to use them as a coherent language. Our notion of patterns is based on
[GHJ+93] and [Joh92].

2 The overall approach

The central notions of our approach are tools and materials, which we call design metaphors. In
many work situations an intuitive conceptual distinction can be made between those things that are
worked upon (materials) and those that are means of work (tools). We use these metaphors to
describe the work of the application domain experts (called users in this paper) for who we develop
software. Metaphors provide a conceptual framework for discussion between users and software
professionals (called developers), because most people have a sufficient understanding of what tools
and materials are.

When actually developing software in a project, we follow an evolutionary and participatory
approach using prototyping [Flo84, BKK+92]. Thus, we organize software development as a mutual
learning and design process where both users and developers cooperate.

Evolutionary software development means designing software in fast feedback cycles involving
all parties concerned. Thus, there are various tasks to perform: We analyze the application domain by
observing how users actually do their daily work, focusing on the tools and materials they use and
we discuss our findings with them. Looking at everyday work, we try to understand the professional
language in use in order to build a model based on these concepts and terms. We extend this
language by new concepts necessary for the envisioned system. While doing this we make heavy use
of scenarios of current work and system visions about anticipated work with the future system.

Having outlined the process model of our approach, we come to our leitmotif of humans as
skilled and trained experts of their domain. To make the goals of our leitmotif concrete, we use the
design metaphors of tools, materials, aspects and environment. These metaphors are realized as
objects and classes on the design level by a construction technique, which we describe as design
patterns of our pattern language.

As a foundation for further research one of the authors designed and implemented an application
framework for the Tools and Materials Metaphor. Its purpose was to extend and improve
implementation techniques used in industrial projects. After the application framework reached a
sufficient degree of maturity and was heavily used in students’ projects, he reinterpreted the
framework as a pattern language which became the main part of this paper.

3 Leitmotif and design metaphors

The context of the design metaphors to be described in this chapter is our leitmotif of skilled experts
whose work we wish to support by software. The metaphors have to conform to the given objectives
of enabling skilled human work, no fixed work flow and knowledgeable interaction with software
tools.

3.1 The distinction between design metaphors and design patterns

Before elaborating our pattern language, we will clarify the difference between the two levels of this
language, i.e. the design metaphors and the design patterns. In short: Design metaphors are patterns
which govern our perception of the application domain and guide us when designing the future
system, while design patterns are used in the technical construction process as a kind of “micro
architecture”.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 3 of 22

The design metaphors we propose are tools, materials, aspects and environment. They express
our understanding of human work in many areas as four different but interrelated concepts. These
work situations will frequently include the use of computers. Design metaphors provide a guideline
and a perspective on how software systems for a given application domain should be designed. They
are used for understanding and analyzing the work of others. Thus they provide an approach as well
as a world view.

The well-known MVC paradigm is based on the metaphor of direct manipulation and a general
concept of domain modeling. This is quite general, lacking any specific leitmotif. Our metaphors are
more specifically aimed at skilled human work supported by computers.

Design patterns are based on design metaphors and are used to relate them to the technical level
of designing software systems. We follow [GHJ+93] seeing design patterns as a set of related classes
and objects interacting in a specific way to achieve a well-defined goal. Design patterns are described
by naming the components, their collaborations and responsibilities. They emerge out of experience
with recurring solutions in designing software systems which they are abstracted from. They describe
the solution to a problem usually making use of a problem-context-solution schema. Design patterns
are used in specific contexts they were invented for as “micro architectures”, i.e. they build the actual
programs.

The MVC paradigm is an example of a classical design pattern consisting of the three
components Model, View and Controller interacting to build a software tool with an underlying
domain model. In line with Gamma et al. we wish to stress that patterns are not merely technical but
also capture the professional’s domain specific understanding guided by the underlying design
metaphors.

Grown from experience, patterns as well as metaphors form the developers’ language and
become powerful tools for analyzing and designing software systems. We use them to communicate,
document and develop our software.

In actual projects we need a third level of our pattern language, which is the level of
programming patterns – they may also be called atoms, idioms or fundamental patterns as on the
patterns mailing list. Programming patterns are basic ways of realizing a software design in terms of
a programming language and with respect to the principles of software engineering. As an example
take the distinction between object and value and different ways to realize this in an object-oriented
language [Cun95]. Pipes and filters may also be shown as basic patterns of software [Sha95]. This
shows that the distinction between design patterns and programming patterns is not sharp.

To sum up, we have three levels within our pattern language for analyzing, designing and
constructing software systems:

 1. The design metaphors within the realm of a leitmotif guiding our perception and our thinking;
 2. The design patterns helping us to transform our design ideas into a concrete software design;
 3. The programming patterns as basic means and forms for expressing software building blocks.

In the following we will explain the first two levels of our language assuming that the third level is
familiar to an experienced software engineer.

3.2 The Tools and Materials Metaphor

The design metaphors of our approach are based on the underlying separation between tools as
means of work and materials as outcome of work. This so-called tools and materials dichotomy leads
to the metaphors of material, tool, aspect and environment.

The presentation of the design metaphors and patterns is illustrated by the following example:
We will design a time planning system to keep track of our dates, appointments, seminars and so on.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 4 of 22

Fig. 1 shows our first tool, a simple calendar. It consists of a list of appointments on the left and the
contents of a selected appointment on the right. Looking at the calendar we will encounter the tool
(the calendar) and its materials (the appointments) as well as aspects of the material (the listable and
editable properties).

Fig. 1: A calendar (tool) that was built
from the application framework.

Materials Design Metaphor

Problem Looking at the skilled professional, we have to identify what he or she is actually
working on, i.e. what the relevant objects of work are. In line with our leitmotif and as a basis for
adequate modeling the focus of the experts’ work has to be analyzed and made explicit.

Solution The “things”, professionals work on are materials. Materials are examined, manipulated
or incorporated into other materials in order to become part of the work results. Examples of
materials are forms, files and folders.

Materials are passive entities which are taken and worked upon when appropriate, like the
different forms laid out systematically on a desktop. In our work, we mainly concentrate on materials
and get the impression of directly accessing and manipulating them. Though we use tools like a
typewriter or a pen to fill in a form, these tools seem to disappear and only the form is in our focus.
We often use our hands as tools while working with tangible materials. In software systems,
however, we can never access materials “directly” but only by using appropriate tools. In order to
maintain an understandable system model, we design “active” tools and “passive” materials. So, in a
software system we need a browser tool to look at the contents of a folder.

The calendar tool from fig. 1 shows some appointment materials presented by that tool.
When designing materials we are not concerned with the graphical or textual representation or

interactive manipulation. Tools use additional graphical objects to display materials. They also
provide the context for working with materials both graphically and logically. Despite the fact that
materials are always represented and manipulated by tools, they exist in their own right and should
not be subordinate to a specific tool.

Tools Design Metaphor

Problem In order to accomplish a task it is obviously not sufficient to just look at materials and
wait for something to happen. Thus, we need the means to both organize and perform our work on
materials.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 5 of 22

Solution When manipulating materials, we use tools as means of work. Often grown out of a long
tradition, they physically embody the experience of how to work efficiently with materials. They are
manifestations of the ways and means materials can be examined and manipulated in a given
application domain. Tools are our example calendar, all kinds of form editors, browsers for folders
and so on.

Tools present a permanent view on materials and give users feedback about their activities.
Tools have their own state which relates to the respective work situation. For example, the calendar
consists of objects that display the appointments, of objects receiving user input and objects which
transform input into manipulation of an appointment. We expect a calendar to “remember” the last
selected appointment.

Well-designed tools become transparent when handled by an experienced user, i.e. they are non-
distracting and give the user the impression of directly manipulating the materials. Despite this, tools
should be marginally present and never “disappear” in a work situation. In unclear or erroneous
situations, users need to look at a tool itself.

Being a tool or a material is not an objective property of an item as such. The distinction
depends on the task at hand. A pencil, e.g., is a tool when we use it to write on paper; it becomes a
material when we sharpen it with a pencil sharpener. As a consequence, we design a help system as a
tool whose materials are tools to be inspected for retrieving help about them. We will see that
Aspects will establish the context that makes clear which is which.

The notion of tools and materials is compatible with the concept of direct manipulation but
underpins the role of tools in human work.

Often a task can be divided into subtasks that may be performed independently. The results of
these subtasks are integrated to form the overall result. We can organize tools in a similar way. The
calendar allows for selecting appointments from a list and editing them. Thus, we build a tool for
handling a list of items, a lister, and a tool for processing the text of an appointment, an editor.

We normally use different tools for working upon a single material. Besides the calendar a
scheduler tool will give an overview of our weekly dates and other tools will do bookkeeping with
appointments.

Aspects Design Metaphor

Problem We never work with a tool on a material in a generic way, but use our knowledge to
select the right tool and handle it in a specific way suitable for the combination of tool, material and
work at hand. Because there may be a variety of intentions of working with the same tool and
material, we have to sort out the different ways of work and their meaning.

Context From traditional crafts, we know that not every tool is suitable for every material. We
will hardly use a pencil sharpener to sharpen a ball-point pen. Furthermore, we find that in many
areas the relations between tools and materials are governed by standards, e.g. the relation between
spanners and nuts. Each tool that fits a material in a specific way does so, because humans designed
it that way to perform a specific task. This task is relevant for understanding the relationship between
tool and material.

Solution We make the relationship between a tool and a material explicit by introducing aspects.
An aspect defines a single interface that provides all necessary operations a tool needs to work
properly with materials. The interface will contain exactly those operations that a tool will need to
work with a material in a specific task. At the same time aspects abstract from specific materials.
The appointments must be listable and editable for the calendar to display and edit them. The

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 6 of 22

operations necessary to perform these tasks are expressed by two different aspects: Listable and
Editable.

Aspects are of equal importance as the distinction of tools and materials, because they define the
necessary operations and thus the context that is needed to perform a specific task. Doing this, they
formally establish the contract which connects a tool with a material [Mey91]. As a consequence,
neither the tool knows its specific materials nor does a material know its tool; they only know the
contract that connects them. This decoupling is a major aid in making our systems more flexible (see
pattern Tool and Material Coupling).

Aspects reflect what work psychologists call usability. Usability means the usefulness of an item
with respect to an intention or a purposeful task or activity. It relies on objective or non-objective
characteristics within a use situation that can be assessed on the background of individual needs
(derived from [DWA93]).

Environment Design Metaphor

Problem A tool or a material is never found in isolation. We always work in well-organized places
equipped with the things we need. In a computer system there is no “natural” environment of this
kind. In order to support skilled work the notions of spatial and logical ordering and relations are of
crucial importance to software systems.

Context We perform tasks in a work environment, e.g. in a workshop or on a desktop. Within
this environment, we physically and mentally organize and arrange our tools and materials of work
according to the needs of the respective tasks and our working habits. Tools and materials therefore
have their place, their location and order. We generally do this in an implicit and intuitive way, based
on our qualification and experience.

Solution We transfer this concept of environment to the computer, because it provides the means
to organize our work. For office work, a familiar concept is the electronic desktop as a place of
planning, working and arranging. It provides a space and several logical dimensions for arranging
things.

The notion of environment allows us to think about constraints between tools and materials.
The environment must provide means for ensuring consistency between them.

4 Design patterns for tool construction and integration

Having introduced the design metaphors of our approach, we will now explain the design patterns in
detail. These patterns conform to the metaphors emphasizing certain characteristics and showing
ways to efficiently implement them. Design patterns do not introduce new concepts or views distinct
from those given by the metaphors but carry over their meaning into detailled software design.

4.1 Graphical Notation

The following figure sketches the graphical notation used throughout the paper. It is based on
Rumbaugh’s work [RBP+91] with small deviations.

Appointment A Rectangle represents a
class. If its label is written in
Italics, the class is abstract.

Calendar

NextAppointment()

This class has an operation
called NextAppointment().

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 7 of 22

Calendar The line on the left shows
that this class is essentially a
cluster.

Calendar This is a cluster called
Calendar with some classes in
it.

Inheritance (here from top to
bottom) is shown by a
triangle.

Appointment This is an object called
Appointment.

1+
An arrow shows a use-
relationship with potential
multiplicity at each end.

4.2 Roadmap to the design patterns

This section introduces the design patterns for the construction of tools and their relation to
materials, starting with patterns for integrating tools with other tools and materials in an
environment. First, however, we will give a short roadmap to these design patterns.

Fig. 2 and 3 show the patterns for tool construction and tool integration respectively. The
patterns are ordered according to their range with the largest one being the border of the overall
layers of each figure. Some patterns break the simple ordering by range, namely Separation of
Powers, Event Mechanism (Observation) and Material Container which overlap.

Each rectangle represents a design pattern except some special classes named Interaction Part,
Functional Part, Aspect Class and Material whose meaning can be guessed from the metaphors and
will be discussed later.

Probably the most important design pattern for tool construction is Tool and Material
Coupling, which structures the system in the large. Tools and materials known from the metaphors
become objects that are linked by aspect classes representing aspects. Tools use materials via
specific aspect classes; materials are subtypes of several aspect classes. Tools are composed from
simpler tools using the mechanisms of Tool Composition. Each simple tool consists of an interaction
part and a functional part separating the powers of both domains. To connect the interaction and
functional parts of tools, an Event Mechanism is used. It allows dependent components to be
informed about changes in order to react appropriately. So, the interaction part of a tool depends on
the state of its functional part and is informed by the functional part about relevant changes. This is
done by announcing an event.

Tool and Material Coupling (overall system)

Tool Composition (whole tool)

Separation of Powers (subtool)

Separation of Powers (subtool)

Functional
Part

Interaction
Part

Material

Aspect

Aspect
Functional

Part
Interaction
Part

Observation

Ob-
ser-
va-
tion

Ob-
ser-
va-
tion

Observation

Environment (overall system)

Material Administration

Tool Coordinator (material update dispatcher)

Tool Composition Material Container

Constraints

MaterialFunctional
Part Updates

Fig. 2: Patterns for tool construction. Fig. 3: Patterns for tool integration.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 8 of 22

The design patterns for tool integration are based on the patterns for tool construction, especially on
Tool Composition and Separation of Powers, which structure a compound tool. As the boundary of
the overall system we use Environment which represents the closure for the single (computer)
workplace. The environment creates Tool Coordinators to inform tools about changes of their
materials that might have occurred due to side effects. These side effects are controlled by the
Material Container, which groups dependent materials and provides constraints for ensuring
consistency.

The functional parts of tools are made available on an abstract level to the Tool Coordinator.
Linked to the tool and material patterns is the Material Administration which provides an abstract
way of accessing Material Providers, i.e. databases. The Material Administration and patterns for
integrating Material Providers are a pattern sub-language of its own, which goes beyond the scope
of this paper.

4.3 Design patterns for tool construction

We will first look at a single tool and introduce patterns for its construction based on the metaphors
tool, material and aspect.

Tool and Material Coupling Design Pattern

Purpose Couple tools with materials through aspect classes which implement aspects. This pattern
captures the way we work with tools on materials and represents the smallest reusable interface to
materials.

Problem Usually a tool is developed to work with a single type of material. But we wish to
develop reusable tools that are not tied to specific materials. Several tools should work on the same
material and one tool should be usable for several materials.

Context Tools and materials are represented by different objects. The interface of a material
should offer all the operations a tool needs but no more. This interface is the aspect a tool uses to
work with materials. Aspects should be independent of each other. The code in figure 5 shows the
aspects Listable and Editable as C++ class interfaces.

Listable

Appointment

Editable

EditorLister // simple interface for listable objects
class Listable {
 String GetDescription() = 0;
 bool isEqual(Listable&) = 0;
 bool isLower(Listable&) = 0;
};

// simple textually editable objects
class Editable {
 String GetParagraph(int) = 0;
 void SetParagraph(String, int) = 0;
};

Fig. 4: The lister and editor tool access the
same material through different aspect
classes.

Fig. 5: C++ Interface of Listable and
Editable . Their functionality is
independent of each other.

A lister (tool) displays items from a container used as a list to select from. An editor (tool) provides
the means for textually editing materials. In order to work properly, both tools need a part of the
functionality of their materials expressed through the aspects Listable or Editable. As discussed
under the metaphor of aspect, both classes should be treated as a contract established between a tool
and a material.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 9 of 22

From a tool’s point of view, aspects can be seen as properties of a material. Thus, the
appointment objects for the calendar should offer both aspects Listable and Editable, because they
can be listed and edited.

Solution Each aspect becomes a class interface in its own right, called an aspect class. An aspect
class determines the operations necessary to make a material usable for a specific tool. The aspects
Listable and Editable given above are aspect classes.

Tools are restricted to work with aspect classes. As a consequence, tools can use any material
that offers the respective characteristics of the aspect class, i.e. fulfills the contract formalized
through the aspect class interface. The appointment class implements the operations specified in
Listable and Editable. The single line returned by the appointment via its Listable interface may
consist of a string with the date and the name of the person to meet. Figure 4 shows the resulting
class diagram for our example.

Introducing a new material to a system is done by identifying which tools should be working
upon that material. Then the appropriate aspect classes are inherited and the specified operations are
implemented. An aspect class can be seen as a partial type. Material interfaces are built out of the
different aspect classes they inherit from.

An aspect class is normally an abstract class that establishes the context in which to interpret a
class as a tool class and other classes as appropriate materials for this tool. We state: A class is a tool
class in context α, if it uses aspect class α, and a class is a material class in context α, if it inherits
from aspect class α.

Aspect classes make the dependencies between materials and tools explicit. They structure a
material’s interface into different sections, each representing a certain way of usage. Tools working
on aspect classes present this interface as the work context to users. Thus, materials cannot be active
(nor “self-representing” or “self-editable”). This indirection provided by tools makes our systems
more flexible.

Aspect classes are our rationale for dealing with multiple inheritance in a constrained but
efficient way. Applied properly, no diamond inheritance structures result and thus no name or
repeated inheritance conflicts emerge.

Additionally, they are a step toward independence. From the point of view of the tools, this is
achieved by the tools’ ignorance of the concrete materials they work upon. They only know their
respective aspects. From the point of view of the materials, no assumptions have to be made about
the tool, in particular none about how materials are presented or handled at the user interface. This
independence is achieved by the materials having to implement only what is specified by their aspect
classes.

If a common understanding of an aspect class has been reached in a software team, tools and
materials can be developed by different groups or persons. Aspect classes can thus serve as a basis
for cooperation and separation of work within in a software team.

Compare Such classes of characteristics are known as Interface Classes [CCH+89]. According to
[WJ90], they also represent responsibilities.

Tool Composition Design Pattern

Purpose Compose tools from independent subtools according to a task – subtask division to allow
for maximum reuse.

Problem Complex tools often consist of similar parts. We will frequently find elementary tasks
that can be captured as basic building blocks. Examples are the lister and editor just presented. We

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 10 of 22

wish to reuse these building blocks and thus need a guideline for building complex tools from simpler
ones.

Context We have already said that the calendar consists of simpler tools, i.e. the lister and the
editor. A composition guideline for tools will have a major impact on the tools presentation and
handling; therefore it must adequately relate to the users’ understanding of the tools and the working
tasks.

Solution When possible, we build a new tool using available tools. These component tools are
called subtools. As each tool realizes a well-defined task, the decision which tool to reuse and how
to embed it must conform to the overall task of the tool. Thus, each subtool’s task must be a subtask
of the embedding tool’s task.

The calendar displays materials in a list and allows editing of a selected material. It embeds the
lister and the editor as subtools, because each subtool realizes a subtask, i.e. listing and editing, of
the calendar’s overall task. In this example the calendar’s task is simply to connect both subtools in
order to realize the way we want to work with a calendar: After an item is selected from the lister,
the editor must be informed and receive the new selected material (fig. 6).

Tools can be either simple or compound. Simple tools are self-contained; they realize their task
without the help of other tools. Compound tools, in contrast, rely on other tools to achieve their
tasks. Lister and editor are simple tools, the calendar is a compound tool.

Every compound tool embeds some subtools that are arranged according to the so-called
principle of delegation. This principle divides tasks into subtasks which can be performed with
minimal information about their context. The result of a subtask is integrated by the overall task that
provides the context for interpretation. Accordingly, a compound tool is called the context tool for
its subtools.

A context tool creates its subtools, delegates and coordinates subtasks and deletes subtools on
demand. It integrates the results of its subtools in order to provide its own result. Any subtool may
perform its task by becoming a context tool for the subtools it creates. The resulting object structure
is a tree of tools (fig. 7).

overall tool
with subtools

EditorLister

Calendar

Compound
Tool

SubTool

Context
Tool

Tool

Simple
Tool

1+

1+

Fig. 6: The calendar is a compound tool
built from the two simple tools lister
and editor.

Fig. 7: Class (left) and object diagram
(right) for tool composition. Each
context tool may have 1..n subtools.

This structure of tools and subtools should not be confused with functional decomposition of e.g.
structured design. Normally, each tool is visible to and thus accessible by the user. No predefined
control flow from the root to the leaves of the tool hierarchy is determined, but the user may interact
freely with any tool.

Tools are not a collection of functions but have a state of their own distinct from their materials
state. A tool’s state captures the way a material is currently used and thus preserves vital information
for the user.

Comment Though each tool can work on its own material, frequently a subtool will work on the
same material as its context tool, but with fewer aspect classes. The calendar uses the aspect classes

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 11 of 22

Listable and Editable in order to supply the lister and editor with materials. Each subtool needs its
respective aspect class to work properly. The calendar, however, needs both aspect classes combined
in order to be able to pass materials between the subtools. Thus, aspect classes can be composed to
build complex aspect classes to satisfy complex tool requirements.

tool

material

Browsable

Editable

Editor

Listable

Calendar

Lister

Fig. 8: Full class diagram for the calendar,
its subtools and the simple and complex
aspect classes.

Figure 8 shows the complex aspect class Browsable as a composition of Listable and Editable. The
appointment class will then inherit from Browsable. The introduction of complex aspect classes
prevents complex tools from being tailored to specific materials. The reason is the same as with
normal aspect classes. Tools build a tool – subtool hierarchy and so do complex aspect classes.

Separation of Powers Design Pattern

Purpose Divide a tool into an interaction and a functional part to separate handling and
presentation from functionality. This facilitates tools to be adapted to changing requirements.

Problem Conceptually, any tool can be divided into two parts: one that deals with presentation
and handling of materials and one that provides the necessary functionality for manipulating
materials. We wish to use this distinction, also known as separation of interaction from function,
when building tools.

Context Each tool has to provide both a user interface for presentation and handling and the
functionality reflecting the task supported by that tool. Assuming a graphical user interface it should
present the various features of the tool as well as a tool and aspect specific view of the material. The
user interface has to offer reactive behavior and as little sequencing of activities as possible. It should
provide modeless interaction. The functionality of each tool should be closely related to a task or
subtask within the application domain.

Solution The general technical solution of separating functionality from presentation and handling
has been introduced by the MVC paradigm of Smalltalk. Adapting the paradigm to our approach we
compose a tool out of one or more interaction parts (IP) and exactly one functional part (FP). The
interaction part manages user actions and presents materials, thereby allowing for complex
interactive handling. It translates user actions either into a mere change of presentation at the
interface or into calls of the functional part. The functional part interprets all actions that examine or
manipulate the materials at hand. It knows the aspect classes of its materials and incorporates the

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 12 of 22

application-oriented knowledge of the tool. The interaction part should be replaceable without
affecting the functional part.

The lister can be divided into two objects implementing the interaction part and the functional
part. The interaction part uses graphical user interface elements to present a list and to receive
notification about a selection from the list. It transforms this notification into a call to a selection
operation of the functional part which is parameterized with an index.

Lister

aspects to
materialsVisualList

(from a gui-lib)

Lister-IP
(interaction part)
Select(...);

Lister-FP
(functional part)
Select(int Index);

Listable

Indexable
(container class)

0+

abstract
tool FPart

Gui-Class
(from a gui-lib)

IPart 1+

1+

Fig. 9: The lister tool consisting of an
interaction and a functional part.

Fig. 10: General class diagram for a tool
with relation to GUI objects.

Compared to the MVC paradigm the interaction part of a tool combines the responsibilities of View
and Controller. The tasks of the Model on the other hand are divided between the functional part,
the aspects and the material. So the Model combines material behavior as seen from the special
viewpoint of an aspect with the tool’s functionality of working with materials. We believe that this
extension of the Model concept is one of the major achievements of the tools and materials
dichotomy compared to MVC.

Compare See also MVC [KP88], ALV [Hil92] and CommonInteract [SP93] as well as [DHM89]
about the basic concepts.

Event Mechanism Design Pattern

Purpose Provide a mechanism that automatically updates the dependencies of IP’s and Context-
FP’s on their FP’s state and also preserves the hierarchy between the components.

Problem If the state of a material or the respective FP changes, the FP’s IP and its Context-FP
have to be informed about these changes. This has to be done anonymously in order to avoid making
FPs dependent on specific IPs or Context-FPs.

Context Any FP should make as little assumptions about its use context as possible. Thus, we
ensure maximum reusability. This would be easy if it were sufficient to restrict the IP and Context-
FP to using the FP. But in reactive and complex interactive systems it is not feasible to permanently
ask the FP (i.e. poll) about changes. Thus, the FP has to take action and notify its IP and Context-FP
about relevant changes.

This means that in case of relevant changes, the FP has to issue an event to notify its observers.
An event is an announcement from the FP to its observers about a change and its kind that has
happened. Observers are the IP and Context-FP which look upon the FP. They receive an event from
the FP, their observed object.

If, for example, the user selects an item from the lister’s visual list, the lister’s FP is informed
about this through the invocation of Select() as given in fig. 12. It then announces an event

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 13 of 22

ItemSelected which is received by its observer, the Calendar-FP. In the following, the Editor-FP will
receive the new selected appointment to be edited. It will then issue the event TextHasChanged that
is received by its IP which in turn updates its display.

It is important that the observed object knows its observers only anonymously. Otherwise, the
observed object could not be used with other observers than those it has been tailored for.

Solution In our solution events are first class objects, observers can register to. Each observable
object, i.e. IP or FP, offers these events in its interface. Observers register by passing an anonymous
reference to the event and an operation to be called.

Observer

Announce()
Register()

Notify();

Event

Observed
Class

anonymous
operation call

0+

class ListerFP : public FPart {

 class Event {
 void Register(...);
 void Unregister(...);
 void Announce(FPart*, Listable*);
 } ItemSelected;

 void Select(int Index) {
 CurrentItem = Container->Get(Index);
 ItemSelected.Announce(this, CurrentItem);
 };
};

Fig. 11: Class diagram for decoupled
observer and observed objects.

Fig. 12: The ItemSelected event in the
lister’s interface is available to clients.

The observed object decides when to announce an event according to changes of its state. It then
calls the Announce Operation of an event which in turn calls the operations which have been passed
to it by its observers.

The parameters for Announce() will differ from event to event. Usually 2 to 3 parameters will
suffice to inform the observers about specific changes. The first parameter is almost always a
reference to the observed object itself; otherwise, the observer has to find out which of its observed
objects has announced the event itself.

An observer should react to an event only through probing operations and should never modify
the observed object. This avoids the danger of entering into an infinite Event-Change-loop.

Compare Change-update as in Smalltalk [GR83] or Observer/Subject in [GHJ+94], implicit
invocation [NGG+93] or callback as in various windowing systems.

IP/FP Plug In Design Pattern

Purpose Reconcile tool composition with tool construction by plugging in Sub-IPs into Context-
IPs and Sub-FPs into Context-FPs.

Problem Tools are structured vertically by composition out of subtools and horizontally by
separating interaction from function. If we wish to dynamically create a subtool, this leads to two
diverging forces that have to be reconciled on the object level.

Context Any tool consists of at least one interaction and one functional part. Creating a subtool
poses the question of how to connect the subtool‘s IPs and FP to the IPs and FP of the context tool.

Calls and events have to be routed in a disciplined way in order to keep the structure and
dynamics of complex tools clear and understandable. This means that a technique for dynamically
plugging subtools into context tools as well as putting interaction parts on functional parts has to be
provided. Creation and deletion have to be considered, too.

Solution First, we show the static structure of class relationships. For the simple case of the
calendar with its lister subtool the structure of fig. 13 results.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 14 of 22

Calendar

Lister

Lister-FPLister-IP

Calendar-FPCalendar-IP

{isomorphic}

Sub-FP

Context-FPContext-IP

Sub-IP 1+

0+0+

1+

Fig. 13: IP and FP coupling between
calendar and lister (context and
subtool).

Fig. 14: General object diagram between
IPs and FPs of context and subtool.

The calendar’s IP works on the lister’s IP and the calendar’s FP works on the lister’s FP.
Additionally, each IP works on its FP. Each relationship in the figure indicates also an observation of
the used object. So, the Lister-FP is observed by the Lister-IP and by the Calendar-FP.

While notifying an IP about relevant changes usually means that the display has to be updated,
notifying the FP of an embedding context tool means that something relevant to the subtool’s task
has happened. If a user selects an item of the list, the lister-FP will notify the calendar-FP, which in
turn takes appropriate action (by handing over the newly selected appointment to the editor).

The general structure is more complicated, because a tool may have more than one interaction
part. The FP of the context tool, the Context-FP, accesses the FPs of its subtools, the Sub-FPs.
Every IP of the context tool (Context-IP) may put several Sub-IPs onto each Sub-FP. The Sub-IPs
work on their Sub-FP like the Context-IPs work on their Context-FP.

Again, each relationship means using as well as observing the used object. The IP is mainly
interested in events that deal with presentation. The Context-FP of an FP is normally interested in
logical issues related to the material or the tool’s state.

We will now look at the dynamics. The decision to create a subtool is made by the Context-FP.
It simply creates the Sub-FP and announces an appropriate event. Informed by this event, the IPs of
the Context-FP decide which objects for the Sub-IPs are needed for the new Sub-FP and therefore
have to be created. Thus, each Context-IP creates zero, one or more Sub-IP objects for every new
Sub-FP. The Context-IP introduces the new Sub-FP to its newly created Sub-IPs. The code of fig.
16 shows this interplay between the calendar’s IP and FP while creating the lister subtool.

Whenever a Sub-FP has to be deleted, the Context-IP deletes all Sub-IPs belonging to this Sub-
FP. Then, the Sub-FP will be deleted by its Context-FP.

4.3 Application of design patterns for a single tool

How do we apply the different patterns in a uniform way like using a coherent language? Looking at
fig. 15, we see a calendar tool that is composed out of the subtools lister and editor both working
on materials via the aspect classes Listable and Editable, respectively.

The Lister-FP and the Editor-FP have been plugged into the Calendar-FP as well as its IPs. The
figure shows that each tool is constructed out of an IP and a FP with the FP notifying its IP about
relevant changes of its state. On closer examination, we actually have not just built a calendar but a
general browser tool that works with any listable and editable material. We could enhance this design
by adding another aspect class FormEditable for the structured editing of materials using fields of
specific data types.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 15 of 22

Calendar

Lister Editor

materials

Appointment

EditableListable

Editor-FPEditor-IPLister-FPLister-IP

Calendar-FPCalendar-IP

class CalendarFP : public ComplexFP {

 class Event {
 Announce(FPart* SubFP };
 } SubFPCreated;

 void CreateSubFPs() {
 ListerFP = new ListerFP(this);
 SubFPCreated.Announce(ListerFP);
 };
};

class CalendarIP : public ComplexIP {

 void CreateSubIP(FPart* NewSubFP) {
 if (NewSubFP->IsA(ListerFP)) {
 ListerIP = new ListerIP(NewSubFP);
 }
 };

 CalendarIP(CalendarFP* MyFP) {
 MyFP->SubFPCreated.Register(CreateSubIP);
 };
};

Fig. 15: Detailed class diagram for the
calendar tool and the appointment with
its aspect classes.

Fig. 16: C++ code showing the interplay
between events and operation calls for
creating a IP for a given FP.

5 Tool integration

Next, we will combine the calendar with a second tool. The additional patterns again have to
conform to the metaphors of tool, material and environment.

5.1 Extending the example

Fig. 17 shows a second tool which we want use together with the calendar. It is a scheduler for a
whole week that presents all periodic dates and allows to directly manipulate them. While the
calendar shows the individual appointments, the scheduler will only show dates like group meetings
and seminars. The materials of the scheduler are a TimeTable object based on WeeklyDate objects.
WeeklyDate objects are distinct from Appointments as they have no fixed date.

In fig. 18 we simplify both tool structures. Thereby we can concentrate on the problems of tool
integration. The scheduler has a TimeTable containing WeeklyDate objects and the calendar has an
AppBook (appointment book) containing Appointments.

Obviously, weekly dates can clash with individual appointments. In order to focus the
discussion, a date clash will be expressed by a boolean flag Conflicts of both WeeklyDate and
Appointment objects. If the flag is set for a WeeklyDate object, a conflicting individual appointment
exists. If the flag is set in an Appointment object, there are overlapping periodic dates. The flag is
necessary for the tools to signal a date clash to the user.

5.2 Design patterns for tool integration

Designing tools there is no need for a supertool controlling all other tools, but a fair selection of
interrelated but independent tools ready at hand for their users. Dependencies may exist among
materials, not tools.

We collect dependent materials into a single Material Container that maintains constraints
among these materials. We use tool coordinators to propagate change notifications among
interrelated tools. Materials are retrieved from the Material Administration which is a kind of Object
Request Broker. Finally, we realize the workplace’s closure through an Environment object.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 16 of 22

AppointmentWeeklyDate

AppBookTimeTable

CalendarScheduler

0+0+
?

bool Conflicts;bool Conflicts;

Fig. 17: A scheduler (tool) extending our
example to examine integration
problems.

Fig. 18: Class diagram of the two tools
and their materials and an integration
relationship.

Material Container Design Pattern

Purpose Group dependent materials into a single container acting as a closure, so that constraints
can be maintained independently from tools and in one place.

Problem Different materials are often related and mutually dependent. Maintaining such
constraints has to be independent of tools in order to allow for easy addition of new tools.

Context Materials like WeeklyDate and Appointment depend on each other; this has to be
expressed and maintained as constraints. For example, adding a new appointment leads to checks
and updates of the Conflicts flag of the WeeklyDate and Appointment objects.

Adding a new tool to our time planning system that works on the same materials should not
make maintenance of constraints more difficult. If the tools were responsible for maintaining material
constraints, these constraints would have to be re-implemented for each new tool. Each tool then
would have to know any related materials – an undesirable situation. Thus, constraints have to be
maintained independently of tools. All constraints will be localized in a single place.

The notion of constraints can be captured formally, e.g. as mathematical equations relating
object attributes. Our experience shows that dependencies often have structural implications on
materials that force rearrangements of object relationships. For the time being, we implement
constraints within standard programming languages, but as constraint languages are becoming more
popular this may change in future.

The constraints treated here take immediate effect. They are restricted to a single workplace.
We call them short-term constraints.

Solution We enclose all materials that are mutually dependent through short-term constraints into
a single container called a material container. This container provides an Update() operation which
is called by a tool, if a relevant change has taken place (a stronger solution controls each access to
the materials of a container). The container in turn triggers a constraint object which it supplies with
the changed material.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 17 of 22

1+

Material Container

MaterialConstraint

FPart

Check(Material);

Update(Material);

Appointment
object

Material
Container

TPSConstraint

WeeklyDate
object

Calendar-FPScheduler-FP

Fig. 19: The material container hides the
constraints between materials and thus
localizes the dependencies.

Fig. 20: Our example has two materials
(WeeklyDate and Appointment) that are
constrained by the TPSConstraint.

In our example, WeeklyDate and Appointment are subclasses of Material. A tailored constraint has
to be written which takes care of these specific materials, called TPSConstraint (time planning
system constraint). The following object diagram shows the result.

The TimeTable and AppBook objects have been omitted for clarity. The TPSConstraint will ask
them for WeeklyDate and Appointment objects. It can be seen as a strategy class encapsulating an
algorithm for constraint maintenance.

Introducing a new tool will cause no further changes as constraints are taken care of in the
TPSConstraint class independently of tools. If a new material is added to the time planning system
only the integrating relationship realized through the TPSConstraint has to be updated.

Tool Coordinator Design Pattern

Purpose Notify tools about changes to their materials due to constraints.

Problem If a constraint changes a material’s state, the tool’s state and the material’s visual
presentation can become inconsistent and thus have to be updated.

Context Each tool whose material is changed by a third party needs to be informed about this
change. As each container may hold several materials, usually more than one tool will be affected.
Entering a new weekly date might lead to clashes with several appointments. Thus, both tools,
scheduler and calendar are affected and have to be informed.

A number of possible solutions come to mind, all based on the notification mechanism. Each
tool can observe its materials, the constraint or the container that in turn will notify it about changes.

We feel that using the notification mechanism this way is highly problematic. Notification should
be used as sparsely as possible. Our experience shows that otherwise the system’s architecture and
dynamics become harder to understand.

Solution For each material container we create a tool coordinator. This is an object that observes
all functional parts working on materials in the container. If a functional part changes a material, it
will issue an Update event to inform its IP or Context-FP. Additionally, this event is received by the
tool coordinator.

The tool coordinator requests a list of materials that were affected by the last manipulation from
the container. From this list and its internal dispatch tables, the tool coordinator derives which FPs’
Update operations have to be called.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 18 of 22

Material Container FPart

Material

Tool
Coordinator

Event Update(...);
Update(Material);

ChangedMaterials();

TPSConstraint

WeeklyDateAppointment

Scheduler-FPCalendar-FP

Tool
Coordinator

Your material
has changed

Cares for
flags

Care for
Update

Fig. 21: The Tool Coordinator dispatches
an event received from an FP to the FPs
of other tools.

Fig. 22: The runtime relationships
between the participating objects and
the resulting control flow.

The dispatch tables can be built efficiently. The tool coordinator knows all tools working on
materials in the container. Each tool offers a list of its FPs under their abstract superclass FPart. Each
FPart object offers the material it works on under the abstract superclass Material. They are held in a
dictionary. The tool coordinator uses the list of affected materials it gets from the container and the
dictionary in order to decide which FP has to be informed. With these superclasses, the tool
coordinator can be built independently of any specific material or tool.

Compare Compare our concept of tool coordinators and material containers with the widespread
notion of mediators as e.g. in [SN92] or [GHJ+94].

5.3 Outlook: The system’s boundaries

We end the presentation of our pattern language by giving a brief outlook on two more design
patterns. The patterns of Material Administration and Environment object define the system
boundaries necessary for integrating the patterns into a work environment.

Material Administration We need a Material Administration for retrieving and storing
materials, for controlling access to originals and copies and for grouping materials into material
containers. The Material Administration subsystem is accessible by any tool. As the result of a
request, tools receive iterators on a set of materials conforming to the query.

The Material Administration works with several material providers, each of them encapsulating
a database service, e.g. an OO-DBMS or a RDBMS. In addition, non-persistent material providers
may be used.

The Material Administration may be seen as a combination of an Object Request Broker (ORB)
and a Portable Common Tool Environment (PCTE) enhanced to fit our specific needs.

Environment object The Environment object sets up the whole system. It shows
accessible tools and materials on a desktop. For each new material container it creates the
corresponding tool coordinator and takes care of technical issues during initialization like providing
screen and database services.

The Environment object is the first object to be created. After system startup, it creates material
providers, each of them encapsulating a database service and the material administration which
receives the material providers. After this, it opens the desktop and waits for users to launch a tool.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 19 of 22

6 Tools and Materials at work

We will now give a short but complete example in order to see the pattern language at work. We will
design a system for task oriented requirements analysis (TORA) [Kei87], which is used at the
University of Hamburg for teaching purposes. It consists of the graphical editor Sane for interactive
manipulation of activity net materials and a glossary browser for textually documenting the objects
of the editor.

GraphObj

Graphical Composite

SizeableDrawable

Canvas-FPCanvas-IP

Sane-FPSane-IP
Sane

InSane (Integrated Sane)

Sane ObjectLexicon

LexiconObj

Storable

GraphObj

ActivityObj

Editor-FP

Tool
Coordinator

InSane
Constraint

Material
Container

Activity-FP

Lexicon-FPSane-FP

1+

Fig. 23: The Sane (tool) and its materials.
The materials’ interface heavily relies on
aspect classes separating different
functionality.

Fig. 24: The integrated system shows that
tools are tied together at the top (Tool
Coordinator) and at the bottom
(Material Container).

The tool Sane consists of a compound tool with two subtools. Each tool has an interaction and a
functional part. The compound tool establishes the frame for the usual services of an application like
file handling, clipboard access etc. The Canvas subtool allows for direct manipulation of the editor’s
materials, which are graphical objects (GraphObjs). The ActivityNet subtool works with the logical
materials ActivityObj. Depending on the number of contexts it is presented in, an ActivityObj has
one or more graphical presentations through GraphObjs.

Access to these materials is mediated through aspect classes establishing the context of use.
They provide an approach for working with graphical objects that differs from what we find in most
editors. The main tool works only with the aspect class Storable to store and retrieve objects from
files or the clipboard. The Canvas-IP uses drag and resize wrappers to manipulate the graphical
objects via its aspect classes Drawable and Sizeable. More complex functionality requires
knowledge of the Composite structure of ActivityObjs introduced through the Composite aspect
class available to the Canvas-FP through the complex Graphical aspect class.

Thinking in terms of aspect (classes) helps very much to separate different functionality from
each other and makes the evaluation of the necessary functionality easier.

Each logical ActivityObj can be documented using the tool ObjectLexicon. For each ActivityObj
there exists a LexiconObj which users textually edit to document the ActivityObj and its GraphObj.
Both materials are kept inside a Material Container which uses the InSane Constraint that e.g.
ensures that the label of the ActivityObj is always the same as that of the LexiconObj.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 20 of 22

If an ActivityObj is created or deleted or its label is changed the tool coordinator will be
notified and in turn informs the related tool.

7 Discussion of the Tools and Materials Metaphor

The application domain of the Tools and Materials Metaphor are environments that fit naturally with
the notion of tools and materials used by skilled human workers. It focuses on the work of people in
workshops and offices. The individual craftsman, the software developer as well as the office worker
fall into this category and may be supported adequately by a software system designed according to
the Tools and Materials Metaphor.

To complete the Tools and Materials Metaphor, additional metaphors like the automaton and
the material administration for embedding databases address other issues that are not discussed in
this paper but are needed in every major project.

When it comes to cooperative work, however, these metaphors have to be extended – a topic
currently under discussion. For office work a possible solution seems to be obvious, namely
introducing mailboxes for incoming and outgoing materials - a concept that used in offices for many
decades. Similar ideas are currently discussed with different outcomes under the label of workflow
management.

Still more ambitious tasks remain to be solved. Close and intense cooperation on an electronic
whiteboard, working on commonly shared artifacts in parallel are tasks that are not fully addressed
by the Tools and Materials Metaphor by now. Nevertheless, we believe to have a fruitful starting
point that can be developed further towards more and advanced metaphors which either integrate or
compete with communication and media metaphors or agents [MO92, Mae94].

8 Outlook

The pattern language presented in this paper will be used to teach the Tools and Materials Metaphor
to both professional developers and students. We want to transfer the experience from the
application framework to industrial projects. In the industrial settings we will carefully analyze how
the metaphors and implementation techniques of our pattern language enhance comprehensibility of
the overall approach, the communication in a team and the resulting design quality.

Acknowledgments

This paper was written in close contact with Karl-Heinz Sylla at GMD St. Augustin, who proposed
essential changes and amendments. We wish to thank our reviewer Bruce Anderson for his
substantial help in making this paper readable and Ralph Johnson for inspiring comments on early
drafts. The paper profited a lot from the discussions in the writer’s workshop at PLoP-94; thus, we
wish to thank all those who by commenting helped improving it.

Bibliography

BCS92 Reinhard Budde, Marie-Luise Christ-Neumann and Karl-Heinz Sylla. “Tools And
Materials: An Analysis and Design Metaphor”. Tools-7, Technology of Object-Oriented
Languages and Systems, Europe-92. Edited by G. Heeg, B. Magnusson and B. Meyer. Prentice-
Hall, 1992. 135-146.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 21 of 22

BKK+92 Reinhard Budde, Karl-Heinz Kautz, Karin Kuhlenkamp and Heinz Züllighoven.
Prototyping. Berlin, Heidelberg: Springer Verlag, 1992.

BZ92 Reinhard Budde and Heinz Züllighoven. “Software Tools in a Programming Workshop”.
Software Development and Reality Construction. Edited by Christiane Floyd, Heinz Züllighoven,
Reinhard Budde and Reinhard Keil-Slawik. Berlin, Heidelberg: Springer-Verlag, 1992. 252-268.

CCH+89 Peter S. Canning, William R. Cook, Walter L. Hill and Walter G. Olthoff. “Interfaces for
Strongly-Typed Object-Oriented Programming”. OOPSLA-89, ACM SigPlan Notices 24, 10
(October 1989): 457-467.

Cun95 Ward Cunningham. “The CHECKS Pattern-Language of Information Integrity”. This
Volume.

DHM89 Mahesh H. Dodani, Charles E. Hughes and J. Michael Moshell. “Separation of Powers”.
Byte (März 1989): 255-262.

DWA93 Wolfgang Dzida, Marion Wiethoff and Albert G. Arnold. ERGOguide – The Quality
Assurance Guide to Ergonomic Software. GMD, Schloß Birlinghoven, Germany, 1993.

Flo84 Christiane Floyd. “A Systematic Look at Prototyping”. Approaches to Prototyping.
Edited by Reinhard Budde, Karin Kuhlenkamp, Lars Matthiassen and Heinz Züllighoven. Berlin,
Heidelberg: Springer-Verlag, 1984.

GHJ+93 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. “Design Patterns:
Abstraction and Reuse of Object-Oriented Design”. ECOOP-93, Lecture Notes in Computer
Science No. 707, 1993. 406-431.

GHJ+94 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, Massachusetts: Addison-Wesley,
1994.

GR83 Adele Goldberg and David Robson. Smalltalk-80: The Language and Its
Implementation. Reading, Massachusetts: Addison-Wesley, 1983.

Hil92 Ralph D. Hill. “The Abstraction-Link-View Paradigm: Using Constraints to Connect
User Interfaces to Applications”. CHI-92, SIGCHI Conference Proceedings. Edited by Penny
Bauersfeld, John Bennet and Gene Lynch. Reading, Massachusetts: Addison-Wesley, 1992. 335-
342.

Joh92 Ralph E. Johnson. “Documenting Frameworks using Patterns”. OOPSLA-92, ACM
SigPlan Notices 27, 10 (October 1992): 63-70.

Kei87 Reinhard Keil-Slawik. “Supporting Participative Systems Development: Task-Oriented
Requirements Analysis”. System Design for Human Development and Productivity: Participation
and Beyond. Edited by Klaus Fuchs-Kittowsky and D. Gertenbach. Berlin, DDR: Akademie der
Wissenschaften der DDR, 1987.

KP88 Glenn E. Krasner and Stephen T. Pope. “A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80”. Journal of Object-Oriented Programming
1, 3 (August/September 1988): 26-49.

Mae94 Pattie Maes. “Agents that Reduce Work and Information Overload”. Communications of
the ACM 37, 7 (July 1994): 31-41.

A Pattern Language ... • Dirk Riehle and Heinz Züllighoven 22 of 22

Mey91 Bertrand Meyer. “Design by Contract”. Advances in Object-Oriented Software
Engineering. Edited by Dino Mandrioli und Bertrand Meyer. London: Prentice-Hall, 1991. 1-50.

MO92 Susanne Maaß and Heinz Oberquelle. “Perspectives and Metaphors for Human-
Computer Interaction”. Software Development and Reality Construction. Edited by Christiane
Floyd, Heinz Züllighoven, Reinhard Budde and Reinhard Keil-Slawik. Berlin, Heidelberg:
Springer-Verlag, 1992. 233-251.

NGG+93 David Notkin, David Garlan, William G. Griswold and Kevin Sullivan. “Adding Implicit
Invocation to Languages: Three Approaches”. JSSST-93, LNCS-742, Object Technology for
Advanced Software. Edited by Shojiro Nishio and Akinori Yonezawa. New York: Springer-
Verlag, 1993. 489-510.

Pir74 Robert M. Pirsig. Zen and the Art of Motorcycle Maintenance. London: Corgi Books,
1974.

RBP+91 James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William
Lorensen. Object-Oriented Modeling and Design. London: Prentice-Hall, 1991.

Sha95 Mary Shaw. “Patterns for Software Architecture”. This Volume.

SP93 Bernhard Strassl and Franz Penz. “CommonInteract: An Object-Oriented Architecture
for Portable Direct Manipulative User Interfaces”. Journal of Object-Oriented Programming 6, 3
(June 1993): 33-39.

SN92 Kevin J. Sullivan and David Notkin. “Reconciling Environment Integration and Software
Evolution”. ACM Transactions on Software Engineering and Methodology 1, 3 (July 1992): 229-
268.

WJ90 Rebecca Wirfs-Brock and Ralph E. Johnson. “Surveying Current Research in Object-
Oriented Design”. Communications of the ACM 33, 9 (September 1990): 104-124.

