A Pattern Language for Tool Construction and Integration
Based on the Tools and Materials Metaphor

Dirk Riehle and Heinz Zillighoven

{riehle, zuelligh}@informatik.uni-hamburg.de
University of Hamburg, Dept. of Computer Science, Software Engineering Group
Vogt-KolIn-Str. 30, D-22527 Hamburg, Germany

1 Background and Motivation

Why dopeople prefer to use certain softwagstems anavhy do they have problems usinthers?
What is the quality within certain software that makes people feebfamiliarusing it and lets them
work efficiently? These are questions that we, like a lot of people who develop arsgbpigmtion
systems in their everyday work, asked ourselves.

We believe thathe key to this quality (inthe sense of [Pir74]) is found 8ystems that allow
people to work according to their qualification and needs while using their skills and competence.
In order todevelop software with thiguality we, as a group,ave put togethemany of the
things which haveroveduseful insoftwareengineeringover the last decades and have integrated

these methods and techniques into a unifying approach — the Tools and Materials MB@gbar,
BZ92]. It has guided us aratherdevelopers duringnalysisand design and has helpedetovision
and finally build systems of quality.

The Tools and Materials Metaphor is an approach wisipexific underlying view of human
work:

* People have the necessary competence and skills for their work.

* There is no need tdefine a fixedvork flow, because people know what they do and azgre
adequately with changing situations.

* People should bable to decide on theawn how to organize thework and their (software)
environment according to their tasks.

We have found thasoftware developed with this goal innd makes peopldéeel comfortable in
usingthe system while improvindpoth the working process and its outcomkis holds at least in
the field we are familiar with, which is work in office-like environments and workshops.

But why “Tools and Materials”? Frorthe long tradition otraftsmanship we have learnttht
humanwork has often found @hysical embodimerthroughtools that craftsmen use t@work on
materials We havetaken thisbasicnotion as a starting point for understanding wioais and
materialsare and how we can extetids concept to software tools antaterials. Thereby we try to
bridge the gap between the “soft” social requirements and a “hard” software system.

The term Tools and Materials Metaphor characterma&soverall approach. Weexplain the
approach and itanderlying idea by using patternlanguage. Westart byoutlining this language on
its “highest” conceptudevel which we call desigmetaphors. Design metaphors &amol, Material,
AspectandEnvironment each representing a differdnit related concept. We then presentrtagt
lower level of abstractionwhich are so-calleddesign patterns for theimplementation of the

In: Pattern Languages of Program Design. Edited by James O. Coplien and Douglas Schmidt.
Reading, Massachusetts: Addison-Wesley, 1995. Pages 9-42.
Copyright © 1995 Dirk Riehle and Heinz Zillighoven. All Rights Reserved.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 2 of 22

metaphors and we show how to tisem as a coherent langua@eir notion of patterns is based on
[GHJ+93] and [Joh92].

2 The overall approach

The central notions obur approach ar¢ools and materials which we call desigmetaphors. In
manywork situations an intuitive conceptual distinction can be made betihesathings that are
worked upon(materials) andhose that areneans ofwork (tools). We use thesmetaphors to
describethe work of theapplication domairexperts (called users in thigper) for who welevelop
software. Metaphors provide a conceptual frameworkdfscussion between users and software
professionals (called developers), becausst peoplédave a sufficient understanding of whabls
and materials are.

When actually developingoftware in a project, wéllow an evolutionary and participatory
approach using prototyping [Flo84, BKK+92]. Thus, we organize software developmemiuasah
learning and design process where both users and developers cooperate.

Evolutionary software developmemteans designingoftware in fast feedbaatycles involving
all parties concerned. Thus, there are various tasks to perforanalee the application domain by
observinghow usersactually do theidaily work, focusing onthe tools andnaterials they use and
we discus®ur findingswith them. Looking at everydayork, we try tounderstand thprofessional
language in use iorder tobuild a modelbased on these concepts and terms. We extesd
language by new concepts necessaryhfeenvisioned systenWhile doing this we make heavy use
of scenarios of current work and system visions about anticipated work with the future system.

Having outlinedthe process modebf our approach, weome toour leitmotif of humans as
skilled and trained experts of their domain. To méke goals obur leitmotif concrete, we use the
design metaphorsf tools, materials, aspects and environment. These metapinenealized as
objects and classes @he design level by aonstruction techniqgyewhich we describe as design
patterns of our pattern language.

As a foundation for further research one of the authors designed and implemented an application
framework for the Tools and Materialgletaphor. Its purposeavas to extend and improve
implementation techniques used in industpabjects. After theapplication framework reached a
sufficient degree of maturity and walseavily used in students’ projects, he reinterpreted the
framework as a pattern language which became the main part of this paper.

3 Leitmotif and design metaphors

The context of thelesign metaphors to be described in thigpter isour leitmotif of skilled experts
whose work we wish to support by software. The metaphors have to conforngieeth@bjectives
of enabling skilled humawork, nofixed work flow and knowledgeable interaction witoftware
tools.

3.1 The distinction between design metaphors and design patterns

Before elaboratingur patterrlanguage, we W clarify the difference betweethetwo levels of this
language, i.e. thdesign metaphors ande designpatterns. In short: &ign metaphorare patterns
which governour perception of theapplication domain and guide us when desigrtimg future
system,while designpatterns are used in thechnicalconstruction process askid of “micro

architecure”.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 3 of 22

Thedesign metaphoraie propose artools materials aspectandenvironmentThey express
our understanding of humanork in manyareas as foudifferent but interrelated concept$hese
work situations Wl frequently includehe use of computers.eBign metaphors provideguideline
and a perspective on how softwagstemdor agiven application domain should be designed. They
are used for understanding aamhlyzingthe work of others. Aus they provide an approachvesll
as a world view.

The well-known MVC paradigm is based thre metaphor of direechanipulation and a general
concept ofdomain modeling. This iquite generallacking any specific leitmotifOur metaphors are
more specifically aimed at skilled human work supported by computers.

Design patterns are based on design metaphors and are used thewiatehe technicallevel
of designing software systems. We follow [GHJ+93] seeing design patterrseisfaelatedlasses
and objects interacting in a specific way to achieve a well-defined gesigripatterns arelescribed
by namingthe components, their collaborations aesponsibilities. They emergrit of experience
with recurring solutions in designing software systems whichdheybstracted fronThey describe
the solution to groblem usually makingse of a problem-context-solution schema. Depafterns
are used in specific contexts they were invented for as “micro architectures”, ieuildeiie actual
programs.

The MVC paradigm is arexample of a classical desigrattern consisting ofthe three
components Model, View and Controller interactingbtold a software tool with arunderlying
domain model. In line with Gamma et al. we wislstess that patterns are moerely technical but
also capture theprofessional’s domain specific understanding guidedth®yunderlying design
metaphors.

Grown from experiencepatterns aswvell as metaphors fornthe developers’ language and
become powerful tools fanalyzingand designingoftware systems. We use them to communicate,
document and develop our software.

In actual projects we need a thitevel of our patternlanguage, which ighe level of
programnng patterns -they may also be callecaitoms, idioms ofundamentalpatterns as on the
patternsmailing list. Programmingpatterns arédasic ways of realizing softwaredesign in terms of
a programming language and witsspect to therinciples ofsoftwareengineering. As an example
take thedistinction between object and value and different ways to realize this in an object-oriented
language [Cun95]. Pipes afilers may also be shown as bagatterns of software [Sha95[his
shows that the distinction between design patterns and programming patterns is not sharp.

To sumup, we havethreelevels within our pattern laguage foranalyzing, designing and
constructing software systems:

1. The design metaphors within tfealm of deitmotif guiding our perception and our thinking;
2. The design patterns helping us to transform our design ideas into a concrete defiigare
3. The programming patterns as basic means and forms for expressing dunftideng blocks.

In thefollowing we will explainthefirst two levels of our language assuming thia thirdlevel is
familiar to an experienced software engineer.

3.2 The Tools and Materials Metaphor

The design metaphors olur approach are based on thederlying separation between tools as
means of work and materials as outcome of work. This so-called tools and materials didbatismy
to the metaphors ohaterial tool, aspectandenvironment

The presentation of th@esign metaphors argitterns is illustrated by tHellowing example:
We will design a time planning systemkeep track obur datesappointments, seminars and so on.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 4 of 22

Fig. 1 showsour first tool, a simplecalendar. It consists of a list of appointmentslarleft and the
contents of a selected appointment on the right. Looking at the calendalt weocaunter the tool
(the calendar) and iteaterials(the appointments) asell asaspects of thenaterial(the listable and
editable properties).

Create | Delete ||discuss plop-94 paper g

06/13/94 meeting heinz 06/14/94, 8, 30an E
J06/13/34 oo-steps meeting ;
N6S14/94 discuss plop-9s dizcuzs paper witl
J06/16/34 hz/gg topics:

g 06/16/34 meeting with hz | - nnti;n of patte
HUE/27/34 trends seminar p dezign-language
H0E/28/94 carola, wolf, kai|- names of patern
407/15/94 ilmenau-94 deadl i| =laboration of .
E 07/28/94 get tickets to c I

i 03/03/34 plop-34 starts! 0

Fig. 1: A calendar(tool) that was built
from the application framework.

Materials Design Metaphor

Problem Looking at theskilled professional, we have tdentify what he or she isctually
working on, i.e. what theelevant objects ofvork are. In linewith our leitmotif and as a basis for
adequate modeling the focus of the experts’ work has to be analyzed and made explicit.

Solution The ‘things”, professionalg/ork on arematerials Materials areexamined, manipulated
or incorporated into othematerials inorder to becomepart of the work resultsExamples of
materials are forms, files and folders.

Materials arepassive entities whiclare taken and worked upamhen appropriate, like the
different forms laid out systematically on a desktop. In our workpaialy concentrate omaterials
and get theimpression of directly accessing and manipulating thEnough we use tools like a
typewriter or a pen tdll in a form, these toolseem to disappear andly the form is inour focus.
We often useour hands astools while working with tangible materials. In softwaystems,
however, we can never accesaterials “directly’but only by usingappropriate tools. In order to
maintain an understandable system model, we design “atboks’ and‘passive” materialsSo, in a
software system we need a browser tool to look at the contents of a folder.

The calendar tool from fig. 1 shows some appointment materials presented by that tool.

When designing materials vage notconcerned with thgraphical or textual representation or
interactive manipulationTools useadditional graphical objects tdisplay materials. They also
providethe context for workingvith materialsboth graphically andogically. Despite the facthat
materialsare alvaysrepresented and manipulatedtbypls, they exist in theiown right andshould
not be subordinate to a specific tool.

Tools Design Metaphor

Problem In order toaccomplish &ask it isobviously not sufficient tojust look atmaterials and
wait for something to happen. Thus, we ndesimeans tdoth organize and perforour work on
materials.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 5 of 22

Solution When manipulating materials, wse tools aseans oiwork. Often grownout of along
tradition, theyphysically embodyhe experience ohow to workefficiently with materials. They are
manifestations ofthe ways and means materials can be examined and manipulatedjivena
application domainTools are ouexample calendasgll kinds of formeditors, browsers for folders
and so on.

Tools present a permaneview on materials and givasers feedbackbouttheir activities.
Toolshave theirown statewhich relates to the respectiveork situation. Foexamplethe calendar
consists of objects thalisplaythe appointments, of objeatsceivinguser input and objectshich
transform input into manipulation of an appointment. {pect a calendar ta¢member’the last
selected appointment.

Well-designed tools become transparent when handled by an experienced tisey are.non-
distracting and givéhe user th@mpression of directly manipulatirtpe materials. Despite thispols
should bemarginally present and never “disappear” in@rk situation. In unclear or erroneous
situations, users need to look at a tool itself.

Being a tool or a material isot anobjective property of anitem as such. The distinction
depends on the task at handpéncil,e.g., is a toolvhen we use it to write on paper; it becomes a
material when we sharpen it with a pencil sharpener. As a consequence, we tiefigsyatem as a
tool whose materialare tools to be inspected foetrieving helpaboutthem. We Wl see that
Aspectawill establish the context that makes clear which is which.

The notion of tools andnaterials is compatible witthe concept of direamanipulation but
underpins the role of tools in human work.

Often a taskcan be divided intsubtasks thamay beperformed independently. The results of
these subtasks are integrateddion the overall result. We can organiteols in asimilar way. The
calendar allowdor selecting appointments fromliat and editing themThus, webuild a tool for
handling a list of items, a lister, and a tool for processing the text of an appointment, an editor.

We normallyuse differenttools for working upon aingle material. Besideshe calendar a
scheduler tool W give an overview obur weekly dates anather tools Wi do bookkeeping with
appointments.

Aspects Design Metaphor

Problem We neverwork with a tool on amaterial in a generic wayut useour knowledge to
select the right tool anlkandle it in aspecificway suitablefor the combination otool, material and
work at hand. Because themaay be avariety of intentions of working witlthe same tool and
material, we have to sort out the different ways of work and their meaning.

Context From traditional crafts, we know thabt every tool is suitabléor every material. We

will hardly use apencil sharpener to sharpen a ball-point pen. Furthermordjnaehat in many

areas the relations betwetols andmaterialsare governed by standards, e.g. the relation between
spanners and nuts. Each tool tfiigta material in a specific wajoes sopecause humans designed

it that way to perform a specific task. This task is relevant for understanding the relationship between
tool and material.

Solution We makethe relationship between a tool and a mategigblicit by introducingaspects
An aspectdefines a single interface that providaknecessary operations a tool needswvtrk
properly with materialsThe interface Wl contain exactlythose operations that a toollmeed to
work with a material ina specific taskAt the same timeaspects abstradtom specific materials.
The appointments must Hestable and editabléor the calendar talisplay and edit them. The

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 6 of 22

operations necessary to perform théssks are expressed byo different aspectstistable and
Editable

Aspects are of equal importance as the distinction of tools and materials, because they define the
necessary operations and thios context that is needed to performapecifictask.Doing this, they
formally establisithe contractwhich connects a tool with a materiiey91]. As a consequence,
neither the tool knows itspecific materialsior does amaterialknow its tool;they onlyknow the
contract that connects theithis decoupling is a major aid in makiogr systems moréexible (see
patternTool and Material Coupling

Aspects reflect whawork psychologists @l usability. Usability meanthe usefulness of an item
with respect to an intention or a purposdasgk oractivity. It relies on objective or non-objective
characteristics within aise situation that can be assessed on the backgroundivafiual needs
(derived from [DWA93]).

Environment Design Metaphor

Problem A tool or a material is never found in isolation. We alwagsk in well-organized places
equipped with theéhings we need. In aomputersystemthere is no “naturalenvironment of this
kind. Inorder to supporskilled work thenotions of spatial ankbgical ordering and relations are of
crucial importance to software systems.

Context We perform tasks in work environment, e.g. in aorkshop or on a desktopVithin
this environment, w@hysicallyand mentallyorganize and arrangsur toolsand materials o#vork
according to the needs of the respective taskoandorking habits. Tools anthaterials therefore
have their place, their location aadder. Wegenerally do this in amplicit and intuitive way, based
on our qualification and experience.

Solution We transfer thigoncept ofenvironment tahe computer, because it provides theans
to organizeour work. Foroffice work, afamiliar concept is the electrondesktop as @lace of
planning, working and arranging. It providesace and severkdgical dimensiongor arranging
things.

The notion of environment allows us to thiakout constraints between toasd materials.
The environment must provide means for ensuring consistency between them.

4 Design patterns for tool construction and integration

Having introducedhe design metaphors @iur approach, we W now explainthe designpatterns in
detail. These patterns conform to the metapleonphasizingcertain characteristics and showing
ways to efficiently implemerthem. Desigrpatternsdo notintroduce new concepts grews distinct
from those given by the metaphors but carry over their meaning into detailled software design.

4.1 Graphical Notation

The following figure sketches theraphical ntation used throughout the paper. Itbhased on
Rumbaugh’svork [RBP+91] with small deviations.

Appointment | A Rectangle represents & calendar This class has awperation
class. Ifits label iswritten in Ko gasponmenty | Called NextAppointment().
Italics, the class is abstract.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 7 of 22

Calendar The line on theleft shows Calendar This is a cluster called
that this class is essentially a 1] Calerdar with some classes in
cluster. it.

Inheritance (here frortop to Appointment) This is an object called
bottom) is shown by a Appointment.
triangle.

14 An arrow shows a use-
—— > relationship with potential
multiplicity at each end.

4.2 Roadmap to the design patterns

This section introduceghe design patterns for the construction of tools and thedfation to
materials, starting withpatterns for integratingools with other tools and materials in an
environment. First, however, we will give a short roadmap to these design patterns.

Fig. 2 and 3 show the patterns for tool construction and tool integregspectively. The
patterns are ordered according to their rawgh the largest onéeingthe border of theoverall
layers of each figureSome patterns break the simple ordering by rangeely Separation of
Powers Event Mechanisr{Observation) antMaterial Containerwhich overlap.

Each rectangle represents a degigtiern except somgpecial classes naméteraction Par
Functional Part Aspect ClassandMaterial whosemeaning can bguessed from the metaphors and
will be discussed later.

Probably the most importandesign pattern for tool construction ool and Material
Coupling whichstructures thesystem inthe large.Tools and materialknown from the metaphors
become objects that atmked by aspect classes representing aspedisols usematerials via
specific aspectclasses; materialgre subtypes ofeveralaspect classes. Tools are compofem
simpler tools using the mechanismslobl CompositionEach simple toolconsists ofin interaction
part and a functional part separating tip@wersof bothdomains. To connec¢he interaction and
functional parts of tools, arEvent Mechanisms used. Itallows dependent components to be
informedaboutchanges iorder to reacappropriatelySo,the interactiorpart of a tooldepends on
the state ofts functionalpartand is informed byhe functionalpart aboutelevant changes. This is
done byannouncing an event

Tool and Material Coupling (overall system) Environment (overall system)

Tool Composition (whole tool) Tool Coordinator (material update dispatcher)
‘Separation of Powers (subtool) ‘Tool Composition ~ : :Material Container
 [interaction . .— Functional| : i]] Constralnts -----

" |Part Observation partl” Aspect i 1] R
] 1 Fur;:ggnal Updates Material]
L ob-| Ob-| 1 i | s N]
______ \s;zr\s;zr Material
ESepa . of Powers (su . 8 I ! A N i i
Interaction ob IT{ n Functionalf :
c|Part 2BSENVANON, - pay[7| Aspect
] [1]

] Material Administration

Fig. 2: Patterns for tool construction. Fig. 3: Patterns for tool integration.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 8 of 22

The desigrpatterns for tool integration are based on the patterns for tool constresi@ajally on
Tool CompositiorandSeparation oPowers which structure a compourtdol. As theboundary of
the overall system we usEnvironmentwhich represents the closure for the single (computer)
workplace. The environmerdreatesTool Coordinatorsto inform tools aboutchanges of their
materials that might haveccurred due teside effects. These side effe@rse controlled by the
Material Container which groups dependent materialsnd provides constraints§or ensuring
consistency.

The functional parts of toolsire made available on an stipact level tathe Tool Coordinator
Linked to the tool andmaterialpatterns is thélaterial Administrationwhich provides an abstract
way of accessindlaterial Providers i.e. databases. Thdaterial Administrationand patterns for
integratingMaterial Providersare a patterisub-language of its own, whigoesbeyondthe scope
of this paper.

4.3 Design patterns for tool construction

We will first look at a single tool and introduce patterns for its construction based on the metaphors
tool, material and aspect.

Tool and Material Coupling Design Pattern

Purpose Couple tools with materials through aspect classes which implement aspects. This pattern
captures thavay wework with tools onmaterials andepresents the smallestusable interface to
materials.

Problem Usually a tool isdeveloped towork with a single type of materiaBut we wish to
develop reusabl®ols that are not tied tgpecific materials. Severadols shouldwork on thesame
material and one tool should be usable for several materials.

Context Tools andmaterialsare represented hgifferent objects. The interface of raaterial
should offerall the operations a tool needs but no mdit@s interface ighe aspect a tool uses to
work with materials. Aspects should be independent of eadr.oftne code ifigure 5 shows the
aspects Listable and Editable as C++ class interfaces.

: : /I simple interface for listable objects
Lister Editor class Listable {
String GetDescription() = 0;
\I/ \I/ bool isEqual(Listable&) =0
bool isLower(Listable&) = 0;

Listable Editable

/I simple textually editable objects
A A class Editable {
String GetParagraph(int) = 0;

Appoilntmen ;void SetParagraph(String, int) = 0;

Fig. 4: The lister and editor tool access the Fig. 5: C++ Interface otistable and
same materiathrough different aspect Editable . Their functionality is
classes. independent of each other.

A lister (tool) displays items from aontainer used asliat to select from. Areditor (tool) provides
the meansfor textually editing materials. lorder to workproperly, both tools need art of the
functionality of their materials express#srough the aspectsidtable or Editable. As discussed
under the metaphor of aspect, bolfisses should liecated as a contraestablished betweentaol
and a material.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 9 of 22

From atool's point of view, aspects can be seen as properties of a material. Thus, the
appointment objects fahe calendar should offer both aspecistdble and Editable, because they
can be listed and edited.

Solution Each aspect becomeslass interface in itsewn right,called anaspect class. An aspect
class determinethe operationsecessary to make a material usdbtea specifictool. The aspects
Listable and Editable given above are aspect classes.

Tools are restricted to wonkith aspect classes. As a consequetas can useany material
that offers the respective characteristics of the aspect clas$ylfils. the contractformalized
through the aspedtlass interface. The appointment clasplementsthe operationspecified in
Listable and Editable. The single line returned by the appointmiants Listable interface may
consist of a string with thdateand thename ofthe person to meet. Figure 4 shows tbgulting
class diagram for our example.

Introducing a new material to a systend@ne byidentifying whichtools should be working
upon thatmaterial. Therthe appropriate aspedassesreinherited andhe specifiedoperations are
implemented. Araspeciclass can be seen as a partial type. Material intertedsuilt out of the
different aspect classes they inherit from.

An aspectlass is normally an abract class that establishtbe context irwhich tointerpret a
class as a tool class and other classes as appropriate materials for this tool. We state: Atatass is a
class incontexta, if it uses aspeatlassa, and a class is a material clascamtexta, if it inherits
from aspect class.

Aspect classes makbe dependencies between materials &yals explicit. Theystructure a
material’s interface into differersections, each representing a certain way ajeiséools working
on aspect classes present this interface asdhecontext to users. Thusiaterialscannot beactive
(nor “self-representing” or “self-editable”). This indirectiggmovided by toolsmakesour systems
more flexible.

Aspect classesire ourrationale fordealing with multiple inheritance in eonstrained but
efficient way. Applied properly, no diamond inheritargteuctures result and thus mame or
repeated inheritance conflicts emerge.

Additionally, theyare a step towarthdependence. Froithe point ofview of the tools,this is
achieved by the tools’ ignorance of the concretgerials theywork upon.They onlyknow their
respective aspects. From the poinvieiv of the materials, no assumptions have to be nefoEut
the tool, inparticular none about homaterialsare presented drandled athe user interfacelhis
independence is achieved e materials having to implement onlyhat isspecified by theiaspect
classes.

If a common understanding of an aspeess has been reached isadtware team, tools and
materials can be developed by differgnbups or persons. Aspedasses cathus serve as basis
for cooperation and separation of work within in a software team.

Compare Such classes of characteristar® known as Interfacglasse§CCH+89]. According to
[WJ90Q], they also represent responsibilities.

Tool Composition Design Pattern

Purpose Compose tools from independent subtools according to a task — subtask division to allow
for maximum reuse.

Problem Complextools often consist o§imilar parts. We Wl frequently find elementaryasks
that can be captured hasic buildingblocks. Examplesre thelister andeditor just presented. We

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 10 of 22

wish to reuse these building blocks and thus need a guideline for building caogd&kom simpler
ones.

Context We have already said thtte calendar consists simplertools, i.e. thdister and the
editor. A compositiorguidelinefor tools wil have a major impact othe tools presentation and
handling; therefore it must adequately relate to the users’ understandingawigteand the working
tasks.

Solution When possible, we build aew tool usingavailabletools. These componentdis are
calledsubtools. As each tool realizesvell-definedtask, thedecision which tool taeuse and how
to embed it must conform to the overall task of the tool. Téash subtool'sask must be a subtask
of the embedding tool’s task.

The calendadisplays materials in a lisind allows editing of a selected material. It embeds the
lister andthe editor as subtools, because each subtool realizes a subtdwsitingeand editing, of
the calendar’s overaliask. Inthis examplghe calendar’stask is simply to connect both subtools in
order torealizethe way we want to workwith a calendar: After an item is selected frdme lister,
the editor must be informed and receive the new selected material (fig. 6).

Tools can be eithesimpleor compound Simpletools areself-contained; they realize theask
without thehelp of other tools. Compound tools, in contragtly on other tools toachieve their
tasks. Lister and editor are simple tools, the calendar is a compound tool.

Every compound tool embeds some subtools #rat arranged according to tise-called
principle of delegation. This principle dividemsks into subtaskehich can beperformed with
minimal informationabouttheir context. The result of a subtask is integrated byvkealltask that
provides the context for interpretatiohccordingly, a compound tool salledthe context toolfor
its subtools.

A context tool creates its subtools, delegates and coordinates subtasks and deletes subtools on
demand. It integrates the results of its subtoolsrdrer toprovide its own resultAny subtool may
perform its task bypecoming acontext tool for the subtools it creates. Thsulting objecstructure

is a tree of tools (fig. 7).
Context
Tool]
overall tool *
with subtooy \
1+

Lister Editor | |

1+

Calendar Tool

AR

Simple Compound SubTool
Tool Tool
Fig. 6: The calendar is a compoutabl Fig. 7: Class (left) and objedliagram
built from the two sinple tools lister (right) for tool composition. Each
and editor. context tool may have 1..n subtools.

This structure of toolsand subtools shouldot beconfused with functional decomposition @Q.
structureddesign. Normally, each tool 18sible to and thusaccessible byhe user. Ngredefined
control flow from the root to thkeaves othe toolhierarchy is determinetyut the usemayinteract
freely with any tool.

Tools are not &ollection of functiondut have astate oftheir own distinct from theimaterials
state. A tool’s state captures the way a mater@alisently used and thus preservéal information
for the user.

Comment Though each tool cawork onits own material, frequently dubtool wil work on the
same material as itontext tool, butvith fewer aspect classes. The calendar uses the atgeses

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 11 of 22

Listable and Editable inrder tosupplythe lister andeditor with materials. Each subtool needs its
respective aspect class to work properly. The calendar, however, needs both aspecoothases

in order to beable topass materials betweéme subtools. Thus, aspexdasses can be composed to
build complex aspect classes to satisfy complex tool requirements.

tool
Calendar

VAN ERN

Lister Editor

Listable Editable

A A

I
Browsable

material

Fig. 8: Full class diagrarfor the calendar,
its subtools and the simple andmplex
aspect classes.

Figure 8 shows theomplexaspectclass Browsable as a composition of Listable and Editable. The
appointment class iliv then inherit from Browsable. The introduction of compkespectclasses
prevents complexools from beingtailored tospecific materialsThe reason is theame as with
normal aspect classes. Tools build a tool — subtool hierarchy and so do complex aspect classes.

Separation of Powers Design Pattern

Purpose Divide a tool into aninteraction and a functiongbart to separatédandling and
presentation from functionality. This facilitates tools to be adapted to changing requirements.

Problem Conceptuallyany toolcan be divided intdwo parts: one thatleals with presentation
and handling of materialsand one that provides theecessary functionalitfor manipulating
materials. Wewish to use this distinction, also known as separation of interaction from function,
when building tools.

Context Each tool has to provideoth a useinterface for presentation artthndlingand the
functionality reflectinghe task supported by that toolssuming a graphicalser interface it should
present the various features of the toolvall as a toohnd aspecs$pecific view ofthe material. The

user interface has to offer reactive behavior and as little sequencing of activities as possible. It should
provide modeless interaction. The functionality of each tool shouldoselyrelated to a task or
subtask within the application domain.

Solution The general technical solution of separating functionality from presentatidmaadbihg

has been introduced Iye MVC paradigm of Smalltalk. Adaptintpe paradigm toour approach we
compose a toobut of one or more interaction partd?) and exactlyone functionapart (FP). The
interaction part managesuser actions and presents materials, theraligwing for complex
interactive handling. It translatasser actions either into a mere change of presentation at the
interface or into calls ahe functionalpart. The functionapart interpretsll actions that exame or
manipulatethe materials at hand. knows the aspedatlasses of its materials aitcorporates the

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 12 of 22

application-oriented knowledge of theol. The interactionpart should be replaceable without
affecting the functional part.

The lister can belivided intotwo objectsimplementingthe interactiorpartand thefunctional
part. The interactionpart uses graphicaliser interfaceelements topresent dist and to receive
notification about aselection fromthe list. It transforms this notification into aalt to a selection
operation of the functional part which is parameterized with an index.

- Lister - abstract
Lister-1P Lister-FP IPart |4, tool FPart
(interaction part (functional part
Select(...); Select(int Index];
1+
/ Gui-Class
- . aspects to (from a guitib)
VisualList Indexable | | materials
(from agui-lib) (container clasg)
o\
Listable
Fig. 9: The lister tool consisting of an Fig. 10: General class diagrafor a tool
interaction and a functional part. with relation to GUI objects.

Compared to the MV@aradigmthe interactiorpart of a toolcombineshe responsibilities of View
and Controller. The tasks of the Model on titkerhandare divided betweerthe functionalpart,

the aspects and theaterial. Sothe Modelcombines material behavior as seen frthra special
viewpoint of an aspect witthe tool’'sfunctionality of working with materials. Welieve that this
extension of the Model concept is one of tmajor achievements ahe tools andmaterials
dichotomy compared to MVC.

Compare See also MVC [KP88], ALV [Hil92] and CommonIinterd&P93] aswell as[DHM89]
about the basic concepts.

Event Mechanism Design Pattern

Purpose Provide amechanism that automaticallypdates thelependencies of IP’s ar@ontext-
FP’s on their FP’s state and also preserves the hierarchy between the components.

Problem If the state of anaterial orthe respective FP changes, the FP’s IP and its Context-FP
have to be informed about these changes. This hasdoneanonymously irorder toavoid making
FPs dependent on specific IPs or Context-FPs.

Context Any FP should make as little assumptioaBoutits use context apossible. Thus, we
ensuremaximumreusability. This would be easy if it weseafficient torestrict the IP and Context-
FP to usinghe FP. But irreactive and complex interactive systems itas feasible tgpermanently
ask the FP (i.e. poll) about changes. Thus, the FP has to takeaatiaotify its IP an€Context-FP
about relevant changes.

This means that in case of relevant chanipesFPhas to issue aevent to notify it®bservers
An event is an announcement from the FP to its obsealmyat achange and it&ind that has
happened. Observers are the IP and Context-FP which look upon the FP. They receivefaomevent
the FP, their observed object.

If, for examplethe user selects atem fromthe lister’s visual list,the lister's FP is informed
about this through the invocation of Select() g#/en in fig. 12. Itthen announces an event

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 13 of 22

ItemSelectedvhich isreceived by its observer, the Calendar-FP. Infdhewing, the Editor-FPwill
receivethe new selected appointment to be edited.lltthien issughe event TextHasChangétat
is received by its IP which in turn updates its display.

It is important that the observed object knows its obsed@ysanonymouslyOtherwise, the
observed object could not be used with other observers than those it has been tailored for.

Solution In our solution events aréirst class objects, observers can registelEach observable
object, i.e. IP or FP, offers these events in its interface. Observers regigéssing an anonymous
reference to the event and an operation to be called.

class ListerFP : public FPart {

Observer class Event {
Notify(); <- - -~ - - R void Register(...);
. void Unregister(...);
Observed o+ ‘anonymous void Anno%nce((FP?art*, Listable*);
Class - operation call } ItemSelected,;
Event ',' void Select(int Index) {
Announce()- - - - - - Currentltem = Container->Get(Index);
Register() IltemSelected.Announce(this, Currentltem);
i
Fig. 11: Class diagramfor decoupled Fig. 12: The ItemSelected event in the
observer and observed objects. lister’s interface is available to clients.

The observed object decides when to announce an event according to changssid. itihen
callsthe Announce Operation of an evemhich inturn callsthe operationsvhich have been passed
to it by its observers.

The parameters for Announce(jiivdiffer from event to eventUsually 2 to 3parameterswill
suffice to informthe observers abougpecific changesThe first parameter is almostwalys a
reference tdhe observed objedself; otherwise, the observéas tofind out which of itsobserved
objects has announced the event itself.

An observer shouldeact to an everanly through probing operations and should nevedify
the observed object. This avoids the danger of entering into an infinite Event-Change-loop.

Compare Change-update as iBmalltalk [GR83] or Observer/Subject in [GHJ+94inplicit
invocation [NGG+93] or callback as in various windowing systems.

IP/FP Plug In Design Pattern

Purpose Reconcile tool composition with toebnstruction by plugging iBub-IPs into Context-
IPs and Sub-FPs into Context-FPs.

Problem Tools are structuredertically by compositionout of subtoolsand horizontally by
separating interaction from function. If wash to dynamicallycreate a subtoothis leads to two
divergng forces that have to be reconciled on the object level.

Context Any tool consists of at least one interaction and ametional partCreating a subtool

poses the question of how to connect the subtool's IPs and FP to the IPs and FP of the context tool.
Calls and events have to beuted in adisciplined way inorder to keep the structure and

dynamics of complexools clear and understandable. This means that a techfoquiynamically

plugging subtools inteontext tools asvell asputting interaction parts ommctional parthas to be

provided. Creation and deletion have to be considered, too.

Solution First, we show the static structure diss relationshipsor the simple case of the
calendar with its lister subtool the structure of fig. 13 results.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 14 of 22

Calendar Context-IP| 1+ Context-FP)
Calendar-IR Calendar-FH

*4

Lister o+ o+
Lister-IP Lister-FP SubdP | 2r f Sub-FP
Fig. 13: IP and FPcoupling between Fig. 14: General object diagram between
calendar and lister (context and IPs and FPs of context and subtool.
subtool).

The calendar’'s IPworks on thelister's IP andthe calendar's FPworks on thelister's FP.
Additionally, each IP works on its FP. Each relationshifh@figure indicates also an observation of
the used object. So, the Lister-FP is observed by the Lister-IP and by the Calendar-FP.

While notifying an IPaboutrelevant changessually means thahe display has to bepdated,
notifying the FP of arembeddingcontext toolmeans that something relevantthe subtool’s task
has happened. If a user selectstam of thelist, the lister-FP Wl notify the calendar-FRyhich in
turn takes appropriate action (by handing over the newly selected appointment to the editor).

The generastructure is moreomplicated, because a tankhy have more thawone interaction
part. The FP of the contexbol, the Context-FR accesses the FPs of its subtools, $né-FPs
Every IP ofthe context tool Context-ID may put severalSub-IPsontoeach Sub-FP. The Sub-IPs
work on their Sub-FP like the Context-IPs work on their Context-FP.

Again, each relationship means usingwasl as observinghe used object. The IP mainly
interested in events thdeal with presentation. Theontext-FP of an FP isormally interested in
logical issues related to the material or the tool’s state.

We will now look at thedynamics.The decision t@reate a subtool imiade bythe Context-FP.
It simply creates the Sub-FP and announces an appropriate event. Inforthesdelyentthe IPs of
the Context-FP decidehich objects for the Sub-IPs are needed for the new Sub-FP and therefore
have to becreated. Thus, each Context-IP creae, one or more Sub-Iébjects forevery new
Sub-FP. The Context-IP introduces the new Sub-FP teeitdy created Sub-IPs. The code figj.

16 shows this interplay between the calendar’s IP and FP while creating the lister subtool.

Whenever a Sub-FP has to be deletieel Context-IP deletesl Sub-IPsbelonging to this Sub-
FP. Then, the Sub-FP will be deleted by its Context-FP.

4.3 Application of design patterns for a single tool

How do weapplythedifferentpatterns in ainiform way like using @oherent language? Looking at
fig. 15, we see aalendar tool that is composed out of the subtools lister and editorwamtling
on materials via the aspect classes Listable and Editable, respectively

The Lister-FP and the Editor-Ffave been plugged intbhe Calendar-FP agell asits IPs. The
figure shows that each tool egenstructecbut of an IPand a FP with the FRotifying its IP about
relevant changes of itgate. Orcloser examination, we actually hawvet just built a calendabut a
general browser tool that works with any listable and editable material. We could enhadesiginis
by addinganother aspeatlass FormEditabléor the structurecditing of materials using fields of
specific data types.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 15 of 22

class CalendarFP : public ComplexFP {

_ b class Event {
Calendar-IR__| Calendar-F¥§ Announce(FPart* SubFP };

} SubFPCreated;
void CreateSubFPs() {
Lister Editor ListerFP = new ListerFP(this);

Calendar

| Lister-IP H Lister-FP Editor-1P H Editor-FP| }_SubFPCreated.Announce(ListerFP);
I8
class CalendarlP : public ComplexIP {
materials void CreateSublP(FPart* NewSubFP) {
i i if (NewSubFP->IsA(ListerFP
Listable Editable I_(isterIP = new Listt(erIP(New%gjéFP);
}
A A j#
| CalendarlP(CalendarFP* MyFP) {
Appointmenf MyFP->SubFPCreated.Register(CreateSublP);
k
I
Fig. 15: Detailed class diagranfor the Fig. 16: C++ codeshowingthe interplay
calendar tool and the appointmenith between events and operaticalls for
its aspect classes. creating a IP for a given FP.

5 Tool integration

Next, we wll combinethe calendar with a seconidol. The additionalpatternsagain have to
conform to the metaphors of tool, material and environment.

5.1 Extending the example

Fig. 17 shows a second tomhich wewant use togethewith the calendar. It is a scheduler for a
whole week that presentdl periodic dates andllows to directly manipulate thenwhile the
calerdar shows théndividual appointments, the scheduleillwnly show dates like groumeetings
and seminars. The materialstbé scheduler are imeTableobject based on WeeklyDate objects.
WeeklyDate objects are distinct from Appointments as they have no fixed date.

In fig. 18 we simplifyboth tool structuresThereby we caegoncentrate on thgroblems otool
integration. The scheduler hagmneTable containing WeeklyDate objects dhd calendahas an
AppBook (appointment book) containing Appointments.

Obviously, weeklydates canclash with individual appointments. Inorder to focus the
discussion, aate clash wll be expressed by a booledlag Conflicts of both WeeklyDate and
Appointment objects. If thédag is set for aweeklyDate object, aonflicting individualappointment
exists. If theflag is set in anAppointment object, there amverlapping periodidates. Thdlag is
necessary for the tools to signal a date clash to the user.

5.2 Design patterns for tool integration

Designingtools there is no need for a supertoohtrolling all other tools, but a faiselection of
interrelated buindependentools ready at hand for their users. Dependenaomy exist among
materials, not tools.

We collect dependent materials into a single Material Container nilaattains constraints
among these materials. We use tamordinators to propagatehange notifications among
interrelatedools. Materials are retrievefilom the MaterialAdministration which is a kind of Object
Request Broker. Finally, we realize the workplace’s closure through an Environment object.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 16 of 22

Tuesday |[Wednesda

Scheduler Calendar

d.00am recent

trends

in ohject- ,/ \

orientation TimeTable ’? AppBook
9.00am recent [

trends \o+ 0+|/

in object-

orientation bool Conflicts; bool Conflicts;

WeeklyDate é Appointment

10.00am|graduate |program domain

seminar verification |analysis
ance mare
Fig. 17: A schedule(tool) extending our Fig. 18: Class diagram dhe two tools
example to examine integration and their materials and an integration
problems. relationship.
Material Container Design Pattern

Purpose Group dependemhaterials into a single container acting as a closure, so that constraints
can be maintained independently from tools and in one place.

Problem Different materials are often related andnutually dependent.Maintaining such
constraints has to be independent of tools in order to allow for easy addition of new tools.

Context Materials like WeeklyDate and Appointment depend on eatier; this has to be
expressed anthaintained asonstraints. Foexample, adding a new appointment leads to checks
and updates of the Conflicts flag of the WeeklyDate and Appointment objects.

Adding a new tool toour time planning system thatorks on thesame materials should not
make maintenance of constraints more difficult. Ifttth@s wereresponsibldor maintaining material
constraints, these constraints would have to be re-impleméntedich newtool. Each tool then
would have toknow any related materials — an undesirable situatiimus, constraints have to be
maintained independently of tools. All constraints will be localized in a single place.

The notion of constraints can be captufednally, e.g. as mathematicafuations relating
object attributes. Ouexperience shows that dependencies often have struchpkdations on
materials thatforce rearrangements of object relationshiper the time being, we implement
constraintswithin standard programming languagbst as constrainnguagesre becoming more
popular this may change in future.

The constraints treated here takenediate effect. Thewre restricted to a single workplace.
We call them short-term constraints.

Solution We enclosall materials thatre mutually dependent through short-term constraints into
a single container calledraaterial container This container provides aspdate() operatiomvhich

is called by &ool, if arelevant change has taken placestf@nger solution controls each access to
the materials of a container). The containetum triggers a constraint objestich it supplies with
the changed material.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 17 of 22

FPart Scheduler-F Calendar-F

Y
Material Containe|
Update(Material);

/

Material
Container

Constraint Material WeeklyDate Appointment
Check(Material); object object
Fig. 19: Thematerial container hides the Fig. 20: Ourexample hagwo materials
constraints between materials and thus (WeeklyDate and Appointment) that are
localizes the dependencies. constrained by the TPSConstraint.

In our example, WeeklyDate and Appointmere subclasses of Material. A tailored constraint has
to be writtenwhich takes care of thesspecific materials, calledPSConstraint (timeplanning
system constraint). The following object diagram shows the result.

The TimeTable and AppBook objects have been omiittedlarity. The TPSConstraintilvask
them for WeeklyDate and Appointment objects. It can be seen as a stiasg)encapsulating an
algorithm for constraint maintenance.

Introducing a new tool il cause no further changes as constraints are taken care of in the
TPSConstraintlass independently dbols. If anew material iadded to theéime planning system
only the integrating relationship realized through the TPSConstraint has to be updated.

Tool Coordinator Design Pattern

Purpose Notify tools about changes to their materials due to constraints.

Problem If a constraint changes material’s state, the tool's statand thematerial’s visual
presentation can become inconsistent and thus have to be updated.

Context Each tool whose material is changed by a third party needs irddosed aboutthis
change. As each containgay hold several materials, usualiyore than one tool Wbe affected.
Entering a new weeklglate might lead to clashes with several appointmemtws, both tools,
scheduler and calendar are affected and have to be informed.
A number of possible solutions come rtond, all based on thaotification mechanism. Each
tool can observe its materials, the constraint or the container that in turn will notify it about changes.
We feel that using the notification mechanism this way is highly problematic. Notification should
be used as sparsely as possiflar experience shows that otherwibe system’sarchitecture and
dynamics become harder to understand.

Solution Foreach material container veeeate aool coordinator This is an object that observes
all functionalparts working ommaterials inthe container. If aunctionalpartchanges a material, it
will issue arlUpdate event tanform its IP orContext-FP Additionally, thisevent is received by the
tool coordinator.

The tool coordinator requests a listroéterials thatvere affected by the lastanipulation from
the container. Frorthis list and its internal dispatch tablése tool coordinatoderives which FPs’
Update operations have to be called.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 18 of 22

. Tool
ool Care for .* Coordinator

R N Update ,/ Your material

Coordinator \\‘ ! has changed
/ \\ : Calendar-F Scheduler-F
Material Containe| FPart /
ChangedMeerials(); Event Upda\te(_.-“);j -F- -
\\ U:}ate(Material);
Material Cares for
EAppointmer} o [WeeklyDatﬁ
Fig. 21: The Tool Coordinatatispatches Fig. 22: The runtime relationships
an event received from an FP to the FPs between the participating objects and
of other tools. the resulting control flow.

The dispatch tables can Hmilt efficiently. The tool coordinator knowsll tools working on
materials in the container. Each tool offers a list of its FPs under their abstract superclass FPart. Each
FPart object offers the material it works on under the abstract superclass Makhayalreheld in a
dictionary. The tool coordinator uses list of affected materials gets from the container and the
dictionary inorder to decide which FP has to be informed. Witiese superclasses, theol
coordnator can be built independently of any specific material or tool.

Compare Compareour concept of tool coordinatoesd material containers withe widespread
notion of mediators as e.g. in [SN92] or [GHJ+94].

5.3 Outlook: The system’s boundaries

We end the presentation ofir pattern laguage bygiving a briefoutlook on twomore design
patterns. The patterns d¥laterial Administration and Environment objectdefine the system
boundaries necessary for integrating the patterns into a work environment.

Material Administration We need a Material Administratidior retrieving and storing
materials, for controlling access twiginals and copies anfibr grouping materials into material
containers. The Material Administration subsystem is accessibbnyyool. As theresult of a
request, tools receive iterators on a set of materials conforming to the query.

The Material Administratiomnvorks with several material providers, each of them encapsulating
a database service, e.g. an OO-DBMS or a RDBMS. In addition, non-persistienial providers
may be used.

The Material Administratiomnay beseen as a combination of an ObjRetquest Broker (ORB)
and a Portable Common Tool Environment (PCTE) enhanced to fit our specific needs.

Environment object The Environment object sets upe wholesystem. It shows
accessibletools and materials on adesktop. Foreach new material container dreates the
corresponding tookoordinator and takes care tethnical issues during initialization like providing
screen and database services.

The Environment object is thist object to becreated. Aftesystemstartup, it createsaterial
providers, each of them encapsulating a database servicthenahterial administratiorwhich
receives the material providers. After this, it opens the desktop and waits for users to launch a tool.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 19 of 22

6 Tools and Materials at work

We will now give a short but complete example in order to see the pattern language at waik. We
design a systenfor task oriented requirements analygiBORA) [Kei87], which is used at the
University of Hamburdor teaching purposes. It consists of graphicaleditor Sane fomteractive
manipulation ofactivity netmaterials and a glossabyowser fortextually documentinghe objects

of the editor.

InSane (Integrated Sane)

Sane Tool
Sane-IP Sane-FP Sane Coordinator ObjectLexicon
|/ |/ Sane- FP Lexicon-FP
Canvas-IP Canvas-FP 1 1
T \ Activity- FP Editor-FP
| Drawable| | Sizeable|
Materlal
- Container
Graphical | |Compositet J
InSane
o Constraint
ActivityObj LexiconObj
1+
GraphObj
Fig. 23: The Sang@ool) and its materials. Fig. 24: The integratedystem showshat
The materials’ interface heavily relies on tools are tied together at thep (Tool
aspect classes separating different Coordinator) and at the bottom
functionality. (Material Container).

The tool Saneconsists of a compound tool witlvo subtools Each tool has amteraction and a
functional part Thecompound tooéstablisheshe framefor theusual services of an applicatitike

file handling, clipboard access elte Canvas subtoaillowsfor directmanipulation ofthe editor’s

materials whicharegraphical objects (GraphObjs). TAetivityNet subtooivorkswith thelogical

materials ActivityOhj Depending orthe number ofcontexts it is presented, an ActivityObj has
one or more graphical presentations through GraphObjs.

Access to thesmaterials is mediated through aspect classes establishing the context of use
They provide ampproach for working witlgraphical objects thatiffers from what wefind in most
editors. Thamain toolworksonly withthe aspect class Storalie storeand retrieve objectom
files or the clipboard. The&Canvas-IPuses drag and resize wrappersntanipulate the graphical
objects via its aspect classes Drawable and Sizedlllere complex functionality requires
knowledge of theComposite structure of ActivityObjstroduced through th€omposite aspect
classavailable to th&€€anvas-FP through the complex Graphical aspect class

Thinking interms of aspect (classd®lps very much teeparataifferent functionality from
each other and makes the evaluation of the necessary functionality easier.

Each logical ActivityObj can be documented usingttdo ObjectLexiconForeachActivityObj
there exists &exiconObj whichusers textually edit to documethie ActivityObj and its GraphObj.
Both materials are kept inside a Material Containehich useghe InSane Constrairthat e.g.
ensures that the label of the ActivityODbj is always the same as that of the LexiconOb;.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 20 of 22

If an ActivityODbj is created or deleted or ilabel ischanged theaool coordinator will be
notifiedand in turninforms the related tool

7 Discussion of the Tools and Materials Metaphor

The application domain d@he Tools and Materials Metaphor are eoninents that fit naturally with
the notion of tools anthaterials used bgkilled humarnworkers. It focuses on theork of people in
workshops and offices. The individual craftsman, the software developell @sthe office worker
fall into this category andhay besupportecadequately by a softwasystem designed according to
the Tools and Materials Metaphor.

To complete the Tools and Materidfetaphor,additional metaphors likthe automaton and
the material administratioior embedding databasesldress otheissues that araot discussed in
this paper but are needed in every major project.

When it comes ta@ooperative work, however, theseetaphors have to be extended — a topic
currently under discussiorkor office work a possible solution seems to be obviongmely
introducing mailboxe$or incomingand outgoingnaterials - aconcept that used wificesfor many
decadesSimilar ideasare currently discussed withfferent outcomes under thiabel of workflow
management.

Still more ambitiougasks rerain to besolved. Close and intenseoperation on an electronic
whiteboard, working owommonlyshared artifacts iparallelare tasks that are naily addressed
by the Tools and Materials Metaphor by now. Neverthelesshelieve to have a fruitfustarting
point that can be developed furthewards moreand advanced metaphawhich eitherintegrate or
compete with communication and media metaphors or agents [MO92, Mae94].

8 Outlook

The pattern laguage presented in tipgaper vill be used to teach the Tools and Materials Metaphor
to both professional developers and students. We want to tratiséeexperience from the
application framework to industrigirojects. In thendustrial settings we W carefully analyze how
the metaphors anidhplementation techniques otir pattern laguage enhance comprehensibility of
the overall approach, the communication in a team and the resulting design quality.

Acknowledgments

This paper was written in clossntactwith Karl-Heinz Sylla atGMD St. Augustin, who proposed
essential changes and amendments. We wislthaak our reviewer Bruce Anderson for his
substantial help imaking thispaper readable arfdalph Johnsoffior inspiring comments oearly
drafts. The paper profited a lfvom the discussions irthe writer's workshop at PLoP-94; thus, we
wish to thank all those who by commenting helped improving it.

Bibliography

BCS92 Reinhard Bidde, Marie-Luise Christ-Neumann arhrl-Heinz Sylla. “Tools And
Materials: An Analysisand Design Metaphor”. Tools-7, Technology of Object-Oriented
Languages and Systems, EuropeBdited by G. Heeg, B. Magnusson and B. Meyer. Prentice-
Hall, 1992. 135-146.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 21 of 22

BKK+92 Reinhard Bude, Karl-Heinz Kautz, Karin Kuhlenkamp and Heinz Zuillighoven.
Prototyping Berlin, Heidelberg: Springer Verlag, 1992.

BZ92 Reinhard Budde andeinz Zullighoven:Software Tools in a Programming Workshop”.
Software Development and Reality Constructigdited by Christiane Floyd{einz Zillighoven,
Reinhard Budde and Reinhard Keil-Slawik. Berlin, Heidelberg: Springer-Verlag, 1992. 252-268.

CCH+89 Peter SCanningWilliam R. Cook,Walter L. HIl and Walter G. Olthoff. “Interfaces for
Strongly-Typed Object-Oriented Programming”. OOPSLA-8€M SigPlan Notice24, 10
(October 1989): 457-467.

Cun95 Ward Cunningham. “The CHECKBattern-Language of Information IntegrityThis
Volume

DHM89 Mahesh H. Dodani, Charles E. Hughes andidhael Moshell“Separation of Powers”.
Byte(Méarz 1989): 255-262.

DWA93 Wolfgang Dzida, Marion Wiethoff and Albert G. ArnolERGOguide — The Quality
Assurance Guide to Ergonomic Softwa@VD, Schlof3 Birlinghoven, Germany, 1993.

Flo84 Christiane Floyd. “A Systematitook at Prototyping”.Approaches to Prototyping
Edited by Reinhard &dde,Karin Kuhlenkamplars Matthiassen and Heinz Zillighovdserlin,
Heidelberg: Springer-Verlag, 1984.

GHJ+93 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. “Deattgrns:
Abstraction and Reuse of Object-OrientBdsign”. ECOOP-93,Lecture Notes in Computer
Science No. 7Q071993. 406-431.

GHJ+94 Erich Gamma, Richard Helm, Ralph Johnson and John Vlissidlesign Patterns:
Elements of Reusable Object-Oriented SoftwdReading, Massachusetts: Addison-Wesley,
1994.

GR83 Adele Goldberg and DavidRobson. Smalltalk-80: The Language and Its
ImplementationReading, Massachusetts: Addison-Wesley, 1983.

Hil92 Ralph D. Hill. “The Abstraction-Link-View Paradigm: Using Constraints to Connect
User Interfaces t@pplications”. CHI-92, SIGCHI Conference ProceedingBdited byPenny
Bauersfeld, John Bennet and Gene Lynch. Readliagsachusetts: Addison-Wesléyg92. 335-
342.

Joh92 Ralph E. Johnson. “Documenting Frameworks usiaterns”. OOPSLA-92ACM
SigPlan Notice27, 10 (October 1992): 63-70.

Kei87 Reinhard Keil-Slawik.“Supporting Participative Systems Development: Task-Oriented
Requirements AnalysisSystem Design for Human Development and Productivity: Participation
and BeyondEdited byKlaus Fuchs-Kittowsky and D. Gertenbach. BerdDR: Akademie der
Wissenschaften der DDR, 1987.

KP88 Glenn E. Krasner an&tephen T. Pope. “A Cookbook fdssing the Model-View-
Controller User Interface Paradigm $malltalk-80”. Journal of Object-Oriented Programming
1, 3 (August/September 1988): 26-49.

Mae94 Pattie Maes. “Agents that Reduce Work and Information Overl@&afhmunications of
the ACM37, 7 (July 1994): 31-41.

A Pattern Language ... * Dirk Riehle and Heinz Zillighoven 22 of 22

Mey91 Bertrand Meyer. “Design by Contract”. Advances in Object-Oriented Software
Engineering Edited by Dino Mandrioli und Bertrand Meyer. London: Prentice-Hall, 1991. 1-50.

MO92 Susanne Maall and Heinz Oberquelle. “Perspectives Metdphors for Human-
Computer Interaction”Software Development and Reality Constructibdited byChristiane
Floyd, Heinz Zillighoven, Reinhar®udde and ReinharkKeil-Slawik. Berlin, Heidelberg:
Springer-Verlag, 1992. 233-251.

NGG+93 David Notkin, David GarlanWilliam G. Griswold andKevin Sullivan. “Adding Implicit
Invocation to Languages: Three Approaches”. JSSST-93, LNCSaHj2ct Technology for
Advanced SoftwareEdited by ShojiroNishio and AkinoriYonezawa. New York:Springer-
Verlag, 1993. 489-510.

Pir74 Robert M.Pirsig. Zen and the Art of Motorcycle Maintenant@ndon: Corgi Books,
1974.

RBP+91 James Rumbaugh, Michael Blaha/lliam Premerlani, Frederick Eddy andilliam
LorensenObject-Oriented Modeling and Desidmndon: Prentice-Hall, 1991.

Sha9s Mary Shaw. “Patterns for Software Architecturgéhis Volume

SP93 Bernhard Strassl and Franz Penz. “Commoninteract: An Object-Oriented Architecture
for Portable DirecManipulative Wser Interfaces”Journal of Object-Oriented Programmirgg 3
(June 1993): 33-39.

SN92 Kevin J. Sullivarand DavidNotkin. “Reconciling Environmenintegration and Software
Evolution”. ACM Transactions on Software Engineering and Methodolody(July1992): 229-
268.

WJ90 Rebecca Wirfs-Brock and Ralph E. Johnson.rni8uing Current Research in Object-
Oriented Design”Communications of the ACBB, 9 (September 1990): 104-124.

