
Unpublished manuscript. Copyright 2000 by the authors. All rights reserved.

Properties of Member Functions in C++
Dirk Riehle

SKYVA International
www.skyva.com, www.skyva.de

riehle@acm.org, www.riehle.org

Stephen P. Berczuk

Verbind, Inc.
www.verbind.com

berczuk@acm.org, world.std.com/~berczuk

Abstract
As C++ developers, we talk a lot about member functions (methods) of a class. We talk about member function
types like getters and setters, command methods, and factory methods. Next to classifying member functions by
purpose, we also talk about properties of member functions like being a primitive or composed method, a hook or
template method, a class or instance method, or a convenience method.

Obviously, we have a large vocabulary for talking about member function types and properties. We use this
vocabulary to communicate and document different aspects of a member function, for example, what it is good for,
who may use it, and how it is implemented. Understanding this vocabulary is a key to fast and effective
communication among developers.

In a previous article, we discussed several key types of member functions [1]. This article presents seven key
properties of member functions that we use in our daily design and programming work. It illustrates them using a
running example and catalogs them for use as part of a shared vocabulary. Some of the method properties have their
own naming convention. Mastering this vocabulary helps us better implement our member functions, better
document our classes, and communicate more effectively.

1 Method types and method properties
We first need to distinguish between member function types (or method types, for short) and member function
properties (or method properties). A method type captures the primary purpose of a method, for example, whether
the method changes a member variable of an object or carries out some helper task. The name of a method type
serves as a succinct label on a method that indicates what type of service the method provides to a client.

A method property, in contrast, describes some additional property of a method that adds to its specification.
Examples of method properties are whether the method is primitive or composed, whether it is available for
overriding through subclasses, or whether it is a mere wrapper around a more complicated method. While a method
is (most of the time) of exactly one method type, it can have several method properties.

Method types and properties are orthogonal and can be (almost) composed arbitrarily.

2

1.1 Method types
In [1], we discuss nine key method types. These method types are grouped into three main categories:

• Query methods. A query method (a.k.a. accessing method) is a method that returns some information about the
object being queried. It does not change the object’s state.

• Mutation methods. A mutation method is a method that changes the object’s state (mutates it). Typically, it does
not return a value to the client.

• Helper methods. A helper method (a.k.a. utility method) is a method that performs some support task. A helper
method does not change the object’s state, but only performs operations on the method arguments.

Each of these categories comprises a set of method types, provided in Table 1. Most methods are of one specific
type, even though it is sometimes helpful to mix types.

Query method Mutation method Helper method

get method (getter) set method (setter) factory method

boolean query method command method assertion method

comparison method initialization method

conversion method

Table 1: Common method types.

The exact definition of these method types can be found at www.riehle.org/cpp-report. Suffice it to say that they
help in communicating effectively and efficiently about methods of classes and interfaces. Several companies that
we know use these method types as part of their programming guidelines.

Method types can be documented using code documentation tags. Tools like Doc++, which is similar to Java’s
Javadoc, can make use of these tags to generate documentation. For example, a get method like “String
component(int i)” that returns a String at some index i of an object is tagged as “@methodtype get”. Or, an assertion
method like “void assertIsValidIndex(int i)” that throws an exception if an invalid index is passed in is tagged as
“@methodtype assertion”.

By consistently tagging methods this way, we document a method using a single keyword that communicates the
method’s purpose succinctly to its readers. Documentation is only one part of the game, though: using method type
names helps in more effectively communicating in design and programming sessions as well.

1.2 Method properties
Browsing Table 1, you may wonder where that well-known pattern “template method” of the Design Patterns book
[4] went. After all, Table 1 lists factory method, which is the other method-level pattern of [4]. Here the distinction
between method types and method properties comes into play. Factory method is the name of a method type, while
template method is the name of a method property.

Documenting methods using method types only leaves out crucial information about the implementation of a
method and its role within the class. Method types are of most value in interface specifications. Method properties,
in contrast, are of highest value in the implementation of a class or interface.

In this article, we distinguish four general categories of method properties plus further C++-specific method
properties. The categories are class implementation, inheritance interface, class/instance level distinction and
convenience.

• Class implementation. The class implementation property defines how the method is implemented. Its values
primitive, composed, or regular describe how methods in a class interact and depend on each other.

3

• Inheritance interface. The inheritance interface property defines the role of the method in the inheritance
interface of a class. Its values hook, template, and regular describe how subclasses are to use them.

• Class/instance level distinction. The class/instance distinction level property of a method defines whether the
method is a class-level or an instance-level method. Its values are instance, class, and static-class.

• Convenience. The convenience property defines whether the method implements its service itself or is a
wrapper around a (typically) more complicated method. The property may be set or not.

Next to these general method properties, C++ provides further property dimensions as keywords on the language
level. These properties include accessibility (public, protected, etc. plus associated access rules), constness, and
others. The C++-specific dimensions are not discussed in this article, because they can be found in any C++
programming book and are well-known to most C++ developers.

The following sections describe the general method properties and show they can be used to improve
communication among developers as well as documentation of source code.

2 Class implementation
As the first type of method property, we discuss is the structure of a method’s implementation. Viewed from this
perspective, a method may be a primitive, composed, or regular method:

• A primitive method is a method that carries out one specific task, usually by directly referring to the member
variable of the object. It does not rely on any (non-primitive) methods of the class that defines the primitive
method.

• A composed method is a method that organizes a task into several subtasks that it glues together as a linear
succession of method calls. Each subtask is represented by another method, primitive or non-primitive.

• A regular method is a method that is not a primitive or composed method. (We list this property value for sake
of completeness, but do not discuss it further).

These property values are not the only possible values. There may be more that may just have slipped or attention.
However, this does not mean they are not there!

2.1 Primitive methods
Recall the Name object example from [1]. A Name object represents a name that consists of several succeeding
name components. Name objects are used to give names to objects when storing and later retrieving them. Name
objects are part of a naming scheme that lets us manage named objects efficiently. Examples of naming schemes are
internet domain names, file names in a file system, and C++ class names.

We represent each name component in a Name object as a string object. The concatenation of the name components
makes up the name. An example of a names “~/cpp/source/Main.C” with the name components “~”, “cpp”,
“source”, and “Main.C”.

Given a Name object, we want to get and set individual name components. Hence, we want methods like “String
component(int i)” for getting the name component at index i and “void component(int i, const string& cs)” for
setting the string object cs as the name component at position i. In addition to doing the basic work, both methods
have to check whether the index i is actually a valid index. Also, we want to send out events to notify clients about
potential or actual changes to the object.

One possible implementation of Name objects is to store the name components in a Vector. Hence, we design and
implement a class VectorName that does exactly this. The set method “void component(int i, const string& cs) of
class VectorName looks as displayed in Listing 1.

/**
 * Set a name component to a new value.
 * @methodtype set
 */

4

void VectorName::component(int index, const string& cs) {
assertIsValidIndex(index); // check whether index is valid
fComponents[index]= cs; // set new value
notifyListeners(new ComponentChangeEvent(...)); // inform listeners

}

Listing 1: The set method “void component(int, string)”of VectorName in a preliminary version.

Now assume that a name object also provides a command method “void components(int i, vector<string> csa)” that
replaces a whole subrange of name components, starting at index i, with the name components in the
“vector<string> csa” vector. If you implement “components” as a for loop that calls “component” for each name
component in “csa”, you get as many ComponentChangeEvents as there are elements in “csa”. Typically, however,
you want only one event, once the task is done.

This is why you split up the functionality of “component” into two methods: one method that does all the
embellishing work like checking the index and sending out events, and one method that carries out the basic task of
setting the new value for a specific name component. This latter method is called a primitive method.

• A primitive method is a method that carries out one specific task, usually by directly referring to the member
variables of the object. It does not rely on any (non-primitive) methods of the class that defines the primitive
method.

Listing 2 shows this primitive method, using the customary “do” prefix in the method’s name.

/**
 * Set a name component to a new value.
 * @methodtype set
 * @methodproperties primitive
 */
void VectorName::doComponent(int index, const string& component) {

fComponents[index]= component;
}

Listing 2: The primitive method “void doComponent(int, const string&)” of VectorName.

Now, you can implement “void component(int, const string&)” and “void components(int, vector<string>)” using
“void doComponent(int, const string&)”. This makes efficient use of the resources: you avoid any redundant and
unwanted boundary checks or events. Also, you can now use the primitive methods to implement other methods
more cleanly.

Primitive methods are typically “fragile” methods. They expect calling methods to maintain all pre- and
postconditions and class invariants. For example, “doComponent” expects that the index position passed in is valid.
It does not check its validity to avoid repeated redundant checking. As a consequence, primitive methods are
frequently protected or even private methods, because they are used only from inside the class.

In any non-trivial class implementation, you do not only have one primitive method, but several. Actually, you
design the implementation of a class around a core set of primitive methods, each one devoted to handling one
specific aspect of the object, typically a single member variable. For example, the set of primitive methods for
handling name components of Name objects comprises four methods, displayed in Listing 3.

string VectorName::doComponent(int index) { ... };
void VectorName::doComponent(int index, const string& component) { ... };
void VectorName::doInsert(int index, const string& component) { ... };
void VectorName::doRemove(int index) { ... };

Listing 3: Primitive methods of VectorName.

The whole scheme of using primitive methods as a basis for implementing classes is called design by primitives. It
serves to break up a class implementation into smaller, more manageable pieces. Also, it is a key constituent of
designing reusable classes, as we see in the next section on hook and template methods.

5

2.2 Composed methods
Listing 4 displays the final “void component(int, const string&)” method, using the “doComponent” primitive
method.

/**
 * Set a name component to a new value.
 * @methodtype set
 */
void VectorName::component(int index, const string& component) {

assertIsValidIndex(index); // check whether index is valid
doComponent(index, component); // set new value
notifyListeners(new ComponentChangeEvent(...)); // inform listeners

}

Listing 4: The method “void component(int, const string&)” in its final version.

As you can see, the method’s body consists of three successive invocations of further methods. After an initial call
to “assertIsValidIndex”, the method calls “doComponent”, followed by “notifyListeners”. The “void component(int,
const string&)” method is called a composed method.

• A composed method is a method that organizes a task into several subtasks that it glues together as a linear
succession of method calls. Each subtask is represented by another method, primitive or non-primitive.

A composed method implements a method as a linear succession of calls to other simpler methods to achieve the
method’s purpose. I think it is important to emphasize “linear succession” which rules out loops and other concepts.

The reason for this constraint is to better distinguish primitive methods from composed methods and from regular
methods. Kent Beck defines the original meaning of composed method in [3]. I read his definition to basically mean
“any kind of method that is not a primitive method.” With this definition, there is no distinction between composed
method and regular method and we should get rid of the name “composed method”.

For this reason, we prefer to define composed method more narrowly, as described above.

3 Inheritance interface
Let us now discuss method properties that describe the role of a method in class inheritance. The key to reusing a
class through inheritance is to properly define an inheritance interface that subclasses use for their implementation.
Here, the following three property values are possible:

• A hook method is a method that declares a well-defined task and makes it available for overriding through
subclasses.

• A template method is a method that defines an algorithmic skeleton for a task by breaking it into subtasks. Some
of the subtasks are deferred to subclasses by means of hook methods.

• A regular method is a method that is not a hook or template method. (Again, we list this property value for sake
of completeness, but do not discuss it further).

In [6], you can find an in-depth discussion of how to use these concepts in the design and implementation of classes
and interfaces.

3.1 Hook methods
VectorName is just one way of implementing Name objects. Next to representing the sequence of name components
as a vector, we can also represent the sequence of name components as a single string object in which the different

6

components are separated by an appropriate delimiter char. We call this class StringName. A StringName object
represents the name “~/cpp/source/Main.C” as the string “~#cpp#source#Main.C” using ‘#’ as the delimiter char.1

Using StringName objects, we can represent a name with less memory than with a VectorName. However, a
StringName requires more time to retrieve a specific name component, because it first has to look up the substring
that represents the name component and then has to create a new String from it. Thus, not one single implementation
is best, and we need both VectorName and StringName objects, depending on how we use the Name objects.

Furthermore, we introduce a Name interface to capture the interface common to both Vector- and StringName
objects. Also, we introduce an AbstractName class that captures the implementation common to both Vector- and
StringName objects. Figure 1 shows the resulting class design.

Figure 1: The Name example design.

Compare the composed method “void component(int, const string&)” from Listing 4 with the primitive method
“void doComponent(int, const string&)” from Listing 3. The composed method is all about how to accomplish a
task by gluing subtasks together. It does not say anything about how the more primitive tasks are carried out, and
most importantly, which member variables of the object they refer to. The primitive method, in contrast, focuses
solely on implementing a primitive task in terms of the object’s member variables.

AbstractName implements the composed method “component” but not the primitive method “doComponent”,
because the composed method applies to all subclasses while the primitive method does not. VectorName
implements the primitive method, because it makes direct use of its fields. However, it is now impossible for the
composed method to call the primitive method, because AbstractName does not know about it. To remedy this
situation, we declare a pure virtual (also known as abstract) method “void doComponent(int, const string&)” in
AbstractName. The composed method can now use this method without requiring an actual implementation by
AbstractName. Listing 5 shows this declaration.

protected:
/**
 * Set a name component to a new value.
 * @methodtype set
 * @methodproperties primitive, hook
 */
virtual void doComponent(int index, const string& component) =0;

1 For storing characters like the delimiter char as regular chars, we mask them using an escape char like ‘\’. So

the general string “#5” would be represented as the “\#5” StringName object.

7

Listing 5: The abstract method “void doComponent(int, const string&)” of the AbstractName class.

The abstract method “void doComponent(int, const string&)” is a hook method.

• A hook method is a method that declares a well-defined task and makes it available for overriding through
subclasses.

A hook method is typically an abstract method. Still, it may also provide a default implementation of the method in
a few cases to make life easier for subclass implementors.

Now that AbstractName requires the implementation of “doComponent” by all its subclasses, we need to define the
StringName implementation of “doComponent” (next to the VectorName implementation of Listing 2). Listing 6
shows an implementation.

class StringName: public AbstractName {
public:

/**
 * Hold the name in a single string.
 */
string fName;
// ...

/**
 * Set a name component to a new value.
 * @methodtype set
 * @methodproperties primitive
 */
virtual void doComponent(int index, const string& component) {

component= maskString(component); // mask control chars
int startPos= startPosOfComponent(index);
string head= fName.substr(0, startPos);
int endPos= endPosOfComponent(index);
string tail= fName.substr(endPos); // take the rest of the string
fName= head + component + tail; // compose new name

}
// ...

}

Listing 6: The method “void doComponent(int, const string&)” of class StringName.

Most non-trivial classes have several hook methods. The overall set of hook methods represents the inheritance
interface of a class. Frequently, the hook methods coincide with the primitive methods, so that the set of primitive
methods equals the set of hook methods and hence the inheritance interface of a class. However, this is not true in all
cases. Listing 7 shows the inheritance interface of AbstractName.

protected:
virtual string doComponent(int index) =0;
virtual void doComponent(int index, const string& component) =0;
virtual void doInsert(int index, const string& component) =0;
virtual void doRemove(int index) =0;
virtual Name createName(const string& name) =0;

Listing 7: Inheritance interface of AbstractName composed of hook methods.

Listing 7 adds to Listing 3 the factory method “Name createName(const string&)” for creating an instance of the
same class as the class of the current object (an AbstractName object does not and should not know whether it is
actually a StringName or VectorName object).

The application of the design by primitives scheme mentioned above to maximize code reuse in inheritance
hierarchies is called the narrow inheritance interface principle. Basically, it states that you should base your abstract
class implementations on a minimal set of primitive hook methods. These hook methods are then used by composed
or template methods.

8

3.2 Template methods
With all primitive and hook methods in place, we can now take a look at how they are used. A first example that
uses primitive methods and hook methods is the composed method “void component(int, const string&)” of Listing
4.

Another example is the “Name contextName()” method defined in the Name interface and implemented by the
AbstractName class. The “contextName” method is a get method that returns a new Name object. The Name object
represents a name that contains all name components of the old Name object, except for the last name component.
So, “contextName” called on ““~/cpp/source/Main.C” returns a “~/cpp/source” Name object. This method is useful
for separating the context of a name from its last name component (for example, to separate the directory name from
a file name).

Listing 7 shows the implementation of “contextName” as defined by AbstractName.

class AbstractName: public Name {
// ...

public:
/**
 * Return context name of Name object.
 * @methodtype get
 */
virtual Name contextName() {

int nc= noComponents()-1;
[1] assertIsValidIndex(nc);

if (nc == 0) {
[2] return createName("");

}

string newName;
for (int i=0; i < nc; i++) {

[3] newName += doComponent(i);
[4] newName += delimiterChar();

}

return newName;
}

// rest of class
};

Listing 8: The “Name contextName()” method of AbstractName.

Effectively, Listing 8 shows several calls to primitive methods (references 1, 2, 3, and 4), of which some are also
hook methods (references 2 and 3). These calls are embedded into further algorithmic work that glues the results of
the individual subtasks together.

The “Name contextName()” method is a template method [4].

• A template method is a method that defines an algorithmic skeleton for a task by breaking it into subtasks. The
implementation of some subtasks is deferred to subclasses by means of hook methods.

Let us compare regular methods with composed methods and template methods. What are the differences? First of
all, a regular method is neither a primitive nor a composed method and neither a hook nor a template method.
Rather, it makes use of further methods at will. There are no constraints on how it uses these methods.

In contrast to regular methods, composed methods and template methods are constrained in the way they use other
methods. From a composed method, we expect a linear succession of calls to other methods, with only minimal glue
in between. There are no constraints on these other methods. Also, no complex algorithm is assumed.

From a template method, we do not only expect an algorithmic skeleton, but also the use of hook methods for
subtasks. By delegating work to hook methods, a template method expects a subclass to specialize the behavior of
the algorithm to the subclass’ implementation without changing the algorithmic structure. Basically, the subclass
fleshes out the skeleton defined by its superclass.

9

When designing the inheritance interface of an abstract superclass, it is not clear whether hook or template methods
come first. Without hook methods, you cannot define template methods. Without template methods, you do not
know what the variant parts of your behavior are. So you need both, and defining hook and template methods goes
hand in hand. Adding hook methods can be part of a refactoring exercise when you discover repeating code.

4 Class/instance level distinction
Another important distinction is between class methods and instance methods.

• An instance method is a method that applies to an instance of a class.

• A class method is a method that applies to a class.

In C++, instance methods are trivial, but class methods are not.

4.1 Instance and class-instance methods
All methods of a class that are not static methods are instance methods. An instance method always has an implicit
“this” argument that refers to the object the method is executed on. Static methods are excluded from the set of
instance methods, because they do not refer to a specific object. Both “doComponent” and “component” are
examples of instance methods.

In C++, there are no “native” class instance methods, simply, because there is no class Class. In fully reflective
systems, you are able to subclass a class Class (representing class objects) and provide new implementations of it.
Unfortunately, C++ is not such a system. This is, why we need a workaround in the form of (static) class methods.

4.2 Class methods
Assume that our Name objects were immutable objects. An immutable object is an object that has no mutation
methods so that its state can not be changed. We would replace command methods like “insert” and “remove” with
methods that do not change the Name object but rather return a new object that represents the result of the “insert”
or remove method. Immutable objects are free of the dangers of side-effects, because they cannot be changed. A
consequence of this property is that you can safely share immutable objects and reduce memory consumption by
avoiding redundant objects. To achieve this, you must gain control of object creation.

You do this by offering your own object creation methods. So you design and implement a static StringName
method “public static StringName createInstance(const string& name)”, as displayed in Listing 9. This method is
used by clients to receive a new StringName object. The method first tries to reuse existing StringName objects that
it has stored in a hashtable. If no matching StringName is found, it creates a new one that it returns to the client.

class StringName: public AbstractName {
protected:

/**
 * sStringNames stores all StringNames retrieved using createInstance
 */
static map<string,StringName*> sStringNames;
// ...

public:
/**
 * Returns a pre-existing StringName, if one exists.
 * Creates a new StringName and stores it, if none exists.
 * @methodtype factory
 * @methodproperties class
 */
static StringName* createInstance(const string& name) {

map<string, StringName>::const_iterator sn= sStringNames.find(name);
if(sn == sStringNames.end()) {

StringName* theName = new StringName(name);
sStringNames[name] = theName;

10

return theName;
}
else {

return *sn;
}

}
// ...

}

Listing 9: The “StringName createInstance(name)” class method of StringName.

The “createInstance” method is a class method, and the “sStringNames” member variable is a class member
variable.

• A class method is a method that applies to a class.

• A class member variable is a member of a class (rather than an instance of it.)

A class method is a method that provides class-level functionality. A class method typically refers to class member
variables much like an instance method refers to member variables of an instance of the class.

In C++, there is no direct way of expressing class methods. However, we can emulate them using static methods.
“createInstance” and “valueOf” are examples of class methods. Emulating class methods through static methods is
not perfect; actually, it is pretty cumbersome, because you do not have inheritance and polymorphism. However, it
works for many common tasks.

This “createInstance” method is just one instance of the common “use static methods to represent class methods”
idiom.

Not all static methods are class methods. Examples of static methods that are not class methods are the “maskString”
and “demaskString” methods that mask or demask a String from control characters (not shown in any listing).

What do we gain by making class methods explicit? Well, we cleanly separate concerns. An instance method should
not access or manipulate class member variables unless this decision is easy to undo once the system evolves.
Rather, any class member variable should be encapsulated behind appropriate class methods. This separation of
concerns makes our code easier to understand and easier to change as requirements evolve.

5 Convenience methods
Finally, let us review convenience methods [5].

• A convenience method is a method that simplifies the use of another, more complicated method by providing a
simpler signature and by using default arguments where the client supplies no arguments.

Effectively, a convenience method is a wrapper around a more complicated method, here called the wrapped
method. Hence, the convenience method is implemented using the wrapped method. However, it makes using the
wrapped method easier by requiring fewer arguments from the client and by supplying default arguments for the
missing arguments. Cast operators, and constructors that perform conversions are also convenience methods.

Consider Listings 10-13. They show the convenience methods “string asString()” and “string asString(char)” and the
more complicated wrapped method “String asString(char, char)”.

/**
 * Returns string representation of name.
 * @methodtype conversion
 * @methodproperties convenience
 */
string AbstractName::asString() {

return asString(’ ’);
}

Listing 10: The “String asString()” convenience conversion method.

11

/**
 * @methodtype conversion
 * @methodproperties convenience
*/
string AbstractName::asString(char delimiter) {

return asString(delimiter, ESCAPE_CHAR);
}

Listing 11: The “String asString(char)” convenience conversion method.

/**
 * @methodtype conversion
 * @methodproperties convenience
*/
string AbstractName::operator()() {

return asString();
}

Listing 12: The convenience conversion operator.

/**
 * @methodtype conversion
 * @methodproperties primitive
 */
string AbstractName::asString(char delimiter, char escape) {

if (isEmpty()) {
return "";

}

string sb;
string delimiterString= delimiter;
for (int i=0; i<noComponents(); i++) {

sb.append(doComponent(i));
sb.append(delimiterString);

}

return sb;
}

Listing 13: The “string asString(char, char)” primitive conversion method.

As we can see, all “asString” methods, and the cast operator “string()” do the same thing, which is to provide a
string representation of a Name object. However, some “asString” methods require fewer arguments than others and
hence are more convenient to use. Only one method, the “String asString(char, char)” method, does the actual work.
All other methods are implemented by delegating to another method.

The method signature of a convenience method typically defines fewer arguments than the signature of the wrapped
method. When calling the wrapped method (which may be just another slightly more complicated convenience
method), the convenience method uses default values or derived values as the missing arguments.

In the example of Listing 10-13, “String asString()” uses the space character as the default delimiter argument, and
“String asString(char)” uses the default escape char as the escape char. Finally, “String asString(char, char)” uses no
default arguments but does the actual work. A client is free to use any of these methods, depending on which
arguments it wants to supply.

/**
 * @methodtype constructor
 * @methodproperties composed
 */
StringName::StringName(const string& name, char delimiter, char escape) {

initialize(name, delimiter, escape);
}

Listing 14: The “StringName(const string&, char, char)” constructor.

12

Typically, convenience methods have the same name as the method they are wrapping. However, this need not be
true in all cases.

Also, you can frequently find a cascading implementation of convenience methods. In the first example, “asString”
is implemented based on “asString(char)” which in turn is implemented based on “asString(char, char)”. Most
developers I know consider cascading convenience methods good style, because changing a default argument can be
carried out in exactly one place.

6 What have we gained?
We can now tag methods with their types and properties. Methods like “void doComponent(int, string)” and “Name
contextName()” can now be documented as shown in Listing 15.

protected:
/**
 * Set a name component to a new value.
 * @methodtype set
 * @methodproperties primitive, hook
 */
virtual void doComponent(int index, const string& component) =0;

public:
/**
 * Return context name of Name object.
 * @methodtype get
 * @methodproperties template
 */
Name contextName() { // ... }

Listing 15: Two example methods documented using @methodtype and @methodproperties tags.

When you talk about methods, you chain the name of the type and the names of the properties. For example, you
call the “doComponent” method a “primitive hook set method”, if you want to give a full specification. Type binds
stronger to “method” than any of the properties. Among the properties, class/instance binds stronger than
hook/template than primitive/composed than convenience. You can also call the “doComponent” method a
“primitive method” or a “hook method” or a “set method” and leave out the other properties, depending on what
method aspect you are talking about.

Talking about methods and documenting them this way is easy, lightweight, and precise. Once you have agreed on a
common catalog of method types and properties as presented in [1] and in this article, you can explain what a
method does much faster and more successfully than possible with a lengthy explanation.

7 Summary
This article provides us with a vocabulary to more effectively talk about methods of C++ classes. It provides the
most common method properties, distinguishes them from method types, and gives them a precise definition. If you
feel that it leaves out some key method properties, let me know. If you know further aliases for the names of the
method properties provided here, let me also know. At “http://www.riehle.org/cpp-report/” you can find a growing
catalog of these and other method properties as well as the source code of the examples.

8 Acknowledgments
We would like to acknowledge the feedback of Robert Hirschfeld, Wolf Siberski, and Hans Wegener. Their
combined comments helped me improve the article in many ways.

13

The method property names are taken from several different sources:

• Arnold and Gosling’s Java the Language [2],

• Kent Beck’s book Smalltalk Best Practice Patterns [3],

• Gang-of-four’s book Design Patterns [4],

• Robert Hirschfeld’s article on Convenience Methods [5],

and most importantly, from common knowledge and use.

9 References
[1] Dirk Riehle and Stephen P. Berczuk. “Method Types in C++”. C++ Report, June 2000.

[2] Ken Arnold and James Gosling. Java, the Programming Language. Addison-Wesley, 1996.

[3] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1996.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-Wesley, 1995.

[5] Robert Hirschfeld. “Convenience Method.” Pattern Languages of Program Design 4. Addison-Wesley, 2000.

[6] Dirk Riehle “Working with Classes and Interfaces.” C++ Report, March 2000. Page 14pp.

10 Catalog of method properties

10.1 Class implementation

10.1.1 Primitive method

Definition: A primitive method is a method that carries out one specific task, usually by directly
referring to the member variables of the object. It does not rely on any (non-primitive)
methods of the class that defines the primitive method.

Name example: void AbstractName::assertIsValidIndex(int), string StringName::doComponent(int).

Prefixes: basic, do.

Comment: Design by Primitive is a key principle of good class design that uses primitive methods.

10.1.2 Composed method

Definition: A composed method is a method that organizes a task into several subtasks that it glues
together as a linear succession of method calls. Each subtask is represented by another
method, primitive or non-primitive.

Name example: string AbstractName::component(int), void AbstractName::component(int, const
string&).

Prefixes: -

Comment: Name taken from [3].

14

10.2 Inheritance interface

10.2.1 Hook method

Definition: A hook method is a method that declares a well-defined task and makes it available for
overriding through subclasses.

Name example: void AbstractName::doComponent(int, const string&).

Prefixes: -

Comment: -

10.2.2 Template method

Definition: A template method is a method that defines an algorithmic skeleton for a task by
breaking it into subtasks. Some of the subtasks are deferred to subclasses by means of
hook methods.

Name example: Name Name::contextName().

Prefixes: -

Comment: Name taken from [4]

10.3 Class/instance level distinction

10.3.1 Instance method

Definition: An instance method is a method that applies to an instance of a class.

Name example: Every non-static query or mutation method of a class or interface.

Prefixes: -

Comment: In reflective systems, an instance method may also be a class method (but need not).

10.3.2 Class method

Definition: A class method is a method that applies to a class.

Name example: static stringName* StringName::createInstance(const string& name).

Prefixes: -

Comment: In reflective systems, a class method is always an instance method of a class object.

10.4 Miscellaneous

10.4.1 Convenience method

Definition: A convenience method is a method that simplifies the use of another, more complicated
method by providing a simpler signature and by using default arguments where the
client supplies no arguments.

Name example: string Name::asString(), string Name::asString(char). (But not: asString(char, char).)

15

Prefixes: -

Comment: Name taken from [5].

