
+DOI�2EMHFW�$VVHPEO\���D�3DWWHUQ�6\VWHP�IRU�'LVWULEXWHG
'RPDLQ�2EMHFWV�LQ�%XVLQHVV�$SSOLFDWLRQV

)ULGWMRI�7RHQQLHVVHQ

sd&m GmbH&Co.KG
Thomas-Dehler-Str. 27,

D-81737 Munich, Germany

Phone: +49-89-63812-330; email: fridtjof@sdm.de

�� ,1752'8&7,21

Distributed systems are a widely discussed topic in today’s software engineering practice. They
complement or sometimes even replace traditional approaches that employ central mainframe
architectures. Very often the distributed architectures go hand in hand with object oriented modeling
and these models have been augmented by design patterns in recent years.

Half-Object Assembly is a system of special purpose patterns for distributed business information
systems. It helps to form the communication layer between the clients and servers assuming the
client/server cut is made through the application kernel to maximize flexibility in application design:

Presentation Layer - GUI Elements

Dialog Control - Use Case Controllers

Database Access Layer

client/server cut

database access

'LVWULEXWHG�'RPDLQ�2EMHFWV
XVLQJ�+DOI�2EMHFW�$VVHPEO\

)LJ�����/D\HUV�LQ�D�GLVWULEXWHG�EXVLQHVV�LQIRUPDWLRQ�V\VWHP

The patterns consider high transaction rates combined with low bandwidth networks by transmitting
only those parts of business objects that are of interest and by offering flexible transaction and
caching mechanisms.

�� 52$'0$3

Half-Object Assembly combines +DOI�2EMHFW�3URWRFRO [Mesz], &DFKH�3UR[\ [BMRSS] and a variant
of the &RPSRVLWH�3DUW [BMRSS]. To allow flexible transmission and transaction mechanisms one can
also use the 6WUDWHJ\ pattern [GHJV]. The patterns in bold rectangles are discussed below.

Half-Object
Assembly

Transport
Mechanism

Variety
Cache Proxy

Half-Object +
Protocol

Half-Object
Modeling

uses consists of

is refined by is extended by

Composite-Part

is variant of

Strategy

can be implemented by

�)LJ�����5RDGPDS�WKURXJK�WKH�SDWWHUQ�V\VWHP

*HQHUDO�FRQWH[W

You are designing a large scale distributed business information system, in which many users want to
access a huge amount of data in parallel. A low bandwidth network makes it impossible to transmit
complete objects for every user transaction. Imagine for example an information system for a railway
company, that allows to read and maintain technical data of all locomotives and cars. There will be
around 1000 online users spread all over the country and connected by only 9,6 kbit/s lines stemming
from legacy applications in mainframe technology.

The pattern system does not address the transport of BLOBs or things like real-time video data. (This
is due to the low bandwidth network which often appears at the customer site and allows the
transmission of small data packages only.) Instead you are primarily interested in typical business data
comprising elementary information like strings or numbers that can easily be transported by high level
mechanisms like CORBA or any RPC.

*HQHUDO�SUREOHP

How can you make the system flexible, responsive, and able to handle large traffic volumes?

*HQHUDO�IRUFHV

1. &KRRVLQJ� WKH� ULJKW� VL]H� RI� WKH� REMHFWV. If the objects of interest are huge, the transmission of
complete instances in a low bandwidth network will be unacceptably long. Experience shows that
this time increases exponentially if the network has high load. This is intolerable since online users
are very often interested only in small parts of the objects. On the other extreme, beware of
organizing the transport packages too fine grained! This is because you should avoid too many
server accesses when displaying a meaningful amount of information on the screen, e.g. to fill a
complete window or at least one page in a notebook. With too many server accesses you may
overload the communication mechanism in the server nodes.

2. 3DUWLDO�YLHZV�RQ� ODUJH�REMHFWV. The next step is to assume that the truth lies in the middle: The
large objects should offer services for each dialog window to fetch the data needed to fill it. But
even this approach has disadvantages: In addition to being already monster objects, their interfaces
get even more complex this way. This makes maintenance significantly harder. Furthermore, it
seems suspicious to have too much functionality concentrated in only few objects.

3. 6HDPOHVV�LQWHUIDFH. The mechanisms of object transport should be hidden in a lower layer of the
software in order not to overload the application with technical details.

4. 6HDUFKLQJ�IRU�D�SUDJPDWLF�DQG�OLJKW�ZHLJKW�VROXWLRQ. When designing a distributed object oriented
system, of course the Common Object Request Broker Architecture (CORBA) is in the center of
interest. So what advice do we get from it? Indeed, CORBA offers a general mechanism for
moving and copying objects between network nodes (see the /LIH�&\FOH services in [COSS]). But
this mechanism is too expensive for our purposes: For every object that is copied you have a
number of remote calls reducing performance significantly. Furthermore, the standard is rather
generic at this point, so it seems that commercial products will at most offer a general framework
and you have to code the important parts yourself. So what we need is a pragmatic and light weight
solution to replicate objects - without losing the benefits of a CORBA like architecture.

*HQHUDO�DSSOLFDELOLW\�DQG�NQRZQ�XVHV

Half-Object Assembly is useful if you have to forge a link between nodes of a distributed information
system, where classical business data (strings, numbers etc.) have to be transmitted. It considers
disparate programming environments (e.g. Smalltalk and C++) and even heterogenous hardware and
operating systems (e.g. the management of a telephone switching system), on which semantically
equivalent object models are implemented and the objects’ data have to be replicated or exchanged.

Half-Object Assembly is successfully used in the project 'DWDEDVH� IRU� 5HLVH]XJZDJHQ� DQG
7ULHEIDKU]HXJH (DaRT) for the Deutsche Bahn AG (DB AG). The pattern is going to be reused in the
project 3URGXFWLRQ�3ODQQLQJ (PPSF) for the DB AG.

5HODWHG�SDWWHUQV

Similar problems are addressed in the 5HSOLFDWLRQ pattern [MoMa] and in 5HFRYHUDEOH�'LVWULEXWRU
[IsDe].

Half-Object Assembly (HOA) is one possible application of +DOI�2EMHFW�3URWRFRO��+233�� [Mesz].
The half-objects form the atomic building blocks of HOA. HOA differs from HOPP in that HOPP

considers half-objects to be isolated, whereas HOA defines a particular synchronization protocol and
emphasizes the interconnection and cooperation of many half-objects forming a complete distributed
application domain model. More metaphorically, HOPP describes a violinist, cellist or trumpet player;
HOA tries to form an orchestra out of them.

�� '(6&5,37,21�2)�7+(�3$77(516

3DWWHUQ����+DOI�2EMHFW�0RGHOLQJ

&RQWH[W

You are designing a distributed information system in which object data on remote servers have to be
displayed and maintained on the clients. The customer is interested in a huge quantity of information
for each "real world" object and tells you of several hundred - partly multivalued - aspects of the
objects. By that your application entities resulting from analysis become huge clusters of data. You
don’t always want to completely transport them between client and server.

3UREOHP

How can you structure application classes to transmit only those parts of the objects relevant to a
specific dialogue?

)RUFHV

1. 3HUIRUPDQFH. A first option is to equip big application classes with several different data accessing
methods. Dependent of the dialog context, these methods provide the client with suitable parts of
the objects. According to ergonomy examinations in [FrBr] for user interfaces the maximal
response times for indexed data accesses should be between one and two seconds (dependent on
the task). So as a rule of thumb the transported data shouldn't be more than 200 bytes in size for
every kilobit per second of network capacity. This consideration bases on two assumptions: First
assume that the time needed for indexed database accesses ranges within milli-seconds and
therefore can be neglected. Second it is supposed that the overhead of the underlying transport
protocol is also neglectable (e.g. the IIOP standardized in [CORBA] produces an overhead of
about 40 bytes per message in comparison to classical sockets as long as you don't use the $Q\ type
in your IDL specification). This limitation vanishes of course when you switch to a broadband
fabric (150-250 Mbit/s) where you can model objects of 10-15 megabytes in size and more, in
theory. It is more the maintainability question telling you not to model too big objects in this case
(see the next point).

2. 0DLQWDLQDELOLW\. If the objects grow too big, then they should be split up. From the pure design
perspective (according to [Meyer]) a class shouldn’t have more than 40 features; otherwise
maintainability decreases rapidly. The domain classes considered in our case are entity classes
which are more or less intelligent data containers. This means that they contain - besides some
internal check routines for data integrity - mainly the standard accessor methods for their instance
variables. Since we have 1-2 access methods per instance variable, the average number of instance
variables of a class should be between 15 and 20.

Of course your system gets more complex with the number of classes involved. So a reasonable
tradeoff must be found between object size, network capacity and system complexity.

6ROXWLRQ

Decompose large objects into smaller ones, whose data are transported in less than a second or are
needed to be read from the server within one single user action (e.g. to fill the contents of a
subwindow or notebook page). Even if the semantics enforce embedding, let the objects reference
each other by pointers only. This way all object parts become autonomous instances and can be
instantiated and transported independently. This minimizes network load and memory allocation on
client and server. The figure below shows such a decomposition in case of 9,6 kbit/s lines. This
enforces objects of about 1 kByte in size to restrict the performance loss due to data transmission to a
tolerable amount of time (one second).

Client

Server

> 10 KB

> 10 KB

< 1 KB

< 1 KB < 1 KB

< 1 KB < 1 KB

< 1 KB

< 1 KB < 1 KB

< 1 KB < 1 KB

)LJ�����'HFRPSRVLWLRQ�RI�ODUJH�REMHFWV

As the figure suggests, you should use the same semantic domain class model on both client and
server. This can be done even when you use different languages on client and server. You only have
to restrict yourself to a common denominator of the language features.

5HVXOWLQJ�FRQWH[W

1. $�VWUXFWXUH� IRU� VDYLQJ�PHPRU\�VSDFH�DQG�QHWZRUN� FDSDFLW\. The approach provides an effective
structure to instantiate only those parts of an object that are really needed. The client side should
provide an appropriate structure for the transmission of small data packages. On the server side it
can save a lot of memory space, e.g. when you are using an object oriented database system
(OODBMS). This is because the OODBMS usually treat aggregations as one single object and
therefore would lock, read or write too many pages at once. (Dependent on database size, the
server processes can be increased in size by 10-100 MB of data that are of no interest at the
moment.) By using pointers, only the required parts of the whole aggregation is read from the disk.

2. $�VWUXFWXUH�IRU�GHFHQWUDOL]LQJ�IXQFWLRQDOLW\�DQG�UHVSRQVLELOLW\. Half-Object Modeling does not hide
internals of the big objects. All instance variables still must be reachable from the root object. But
it becomes possible to distribute the authority of an object’s data transmission to the objects

themselves respectively their parts. So there is no single and huge module having the burden to
control all server accesses in the system.

3. ,QFUHDVHG�FRPSOH[LW\. Half-Object Modeling increases the number of classes in your system, so it
becomes more complex. Design your classes in a way that the data are transported by the network
in a tolerable amount of time.

4. 3RLQWHUV�DUH�OHVV�VHFXUH�WKDQ�HPEHGGLQJ. Make sure that you don’t assign pointer attributes from
outside an object. This can easily be done by avoiding the corresponding set-methods. The setting
of these attributes has to be done by the object itself. This way you avoid undesired sharing of
objects which can cause ticklish errors.

5HODWHG�SDWWHUQV

Half-Object Modeling (HOM) has some relationship to the &RPSRVLWH�3DUW pattern [BMRSS]. But
note the difference: The root object in HOM does not play any role of :UDSSHU ([GHJV]) as it does in
the &RPSRVLWH�3DUW. Within HOM the instance variables of every object in the hierarchy are still
visible to the client through navigation.

3DWWHUQ����+DOI�2EMHFW�$VVHPEO\

&RQWH[W

Imagine you are designing a distributed information system whose client nodes display and maintain
the data of objects spread all over the network. The same semantic domain class models are
underlying the implementation of clients and servers. They are possibly implemented in different
languages or on different platforms.

3UREOHP

How can you manage the transmission of the object’s data without overloading the servers and the
network?

)RUFHV

1. 7UDQVSDUHQW� QDYLJDWLRQ� WKURXJK� WKH� REMHFW� KLHUDUFK\. It should be possible for the clients to
navigate through remote domain objects as if they were local. Only these domain objects should be
instantiated on the client which are really needed. All server accesses should be hidden from the
application programmer.

2. &HQWUDOL]DWLRQ�YV�GLVWULEXWLRQ. You have an analogous object hierarchy on clients and servers and
the object's data have to be exchanged or replicated between them. You have to decide whether to
implement a central object server that forges a link between two worlds or to delegate the
responsibility for data transmission to each of the objects themselves. The situation is comparable
with that of a database access layer. A central object server has the advantage that the client/server
communication is clearly modularized and does not burden the application classes. But it is not
scalable at all. This is because with every new class the knowledge and size of such a central

module grows. It has to know about every single server access. Furthermore, when using a
compiled language, including this module generally means compile-time dependency from the
whole system - a well known design flaw that has to be definitely avoided in large systems.

6ROXWLRQ

Use the general idea of KDOI�REMHFWV [Mesz] for every application domain object from the
decomposition above. Implement the synchronization protocol of the half-objects in two steps. First
enhance the client object with a cache of all instance variables of the server object it is connected to.
Second every server object has to offer remote services to read respectively write some data structure
corresponding to this instance variables.

The transmitted data structure comprises both elementary data to be displayed on the screen DQG
remote communication handles of all objects referenced directly by the actual server object. This
means that you need to read objects by key only for the roots of object hierarchies. For further
navigation all the remote handles are available on the client.

Dialog Control - Use Case Controllers

half
obj2

half
obj2

half
obj1

half
obj1

half
obj3

half
obj3

local
reference

local
reference

local
reference

local
reference

Presentation Layer - GUI Elements

obj1 obj2 obj3
client address space

server address space

)LJ�����$�KLHUDUFK\�RI�KDOI�REMHFWV�IRUPV�D�GLVWULEXWHG�DSSOLFDWLRQ�REMHFW�PRGHO

The following scenario shows how you can use this assembly of half-objects to navigate through the
object graph and to transport only those objects that are really requested (HOn-C denotes the half-
object with number Q on the client side, HOn-S its counterpart on the server):

1. HO1-C is created, its remote communication handle is read from the server and put into
HO1-C. Result: HO1-C is FRQQHFWHG to the server.

2. When the elementary data from HO1-C are needed, they are fetched from HO1-S via the
remote reading message. The returned data structure contains the elementary data for
HO1-C and the remote communication handle to HO2-S.

3. HO1-C is equipped with its elemenatry data and with a local reference to a newly created
HO2-C. The returned communication handle to HO2-S is put into HO2-C. Result: HO1-C
is FDFKHG and HO2-C is FRQQHFWHG.

The procedure continues recursively if the data of HO2-C are required. You see that the object
hierarchy grows dynamically as the user navigates through it.

A data writing scenario can easily be derived from this: Every client half-object can flush its
elementary data to the server half-object which immediately commits the changes to the database.
Then the client half-object invokes the flushing on all half-objects directly referenced, so that finally
the whole subtree is written to the database. You can optimize network load if you introduce dirty
markers for every half object and don’t flush any clean objects.

5HVXOWLQJ�FRQWH[W

1. 6XLWDEOH�IRU�FRGH�JHQHUDWLRQ. The standard half-object protocol used here is a simple and generic
solution. The work is distributed among the participating objects. It is well suited for automatic
code generation, so that application developers don’t need to care much about client/server
communication.

2. 0LQLPL]HG� QHWZRUN� WUDIILF. Another advantage is that the network traffic is minimized. When
reading objects, only those objects are sent over the network that are really needed. When writing
a complex object hierarchy to the server, only the objects that have changed are sent to the server.

3. 0DQ\�FOLHQW�KDOI�REMHFWV�FRQQHFWHG�WR�RQH�VHUYHU�KDOI�REMHFW. In contrast to +233 [Mesz] the half-
objects may be split up into more than two address spaces: It is possible that several client half-
objects are connected to one single server half-object when users are reading the same objects.

4. 6LPSOH�EXW�UHVWULFWHG�WUDQVDFWLRQ�ORJLF. Be aware of the simple and restricted transaction logic of
this approach. Committing each half-object separately implies splitting of one logical writing
transaction into several technical transactions which in sum don’t have the ACID properties of
transactions (Atomicity, Consistency, Isolation, Duration, see [Date]). For example, if the user had
changed the root and some other object in the hierarchy and "commits" this changes, it could
happen that the root object is correctly written to the database, but then the referenced object
refuses the commit because another user changed it in the mean time. This violates the atomicity
and isolation property of transactions. Therefore this approach is suitable only when there are no
integrity constraints within different objects in the hierarchy. But don’t be confused - there are
indeed many situations in which such a simple strategy is appropriate. When used, it can
dramatically increase the data throughput.

5. 1R�DXWRPDWLF�FDFKH�YDOLGDWLRQ. Note that a client half-object remains cached and clean even when
another user has changed the corresponding object on the server in the mean time. No notification
takes place. This fits well to transactions using optimistic concurrency control [Date].

6. 0DQ\�VHUYHU�DFFHVVHV� LI� WKH�REMHFW�PRGHO� LV� ILQH�JUDLQHG. If there are many small objects in the
system, reading can be too slow since every object is fetched by a separate remote call. The same
is true for writing.

7. /HDYLQJ� VRPH� REMHFWV� WUDQVLHQW� RQ� WKH� FOLHQW. In the discussion so far every application domain
object is connected as a half-object to the server. If you have many small objects - e.g.)O\ZHLJKWV
[GHJV] - it may be desirable not to connect all of them to avoid connection overhead. Then you
can instantiate those small objects transiently as simple data containers without connecting them.
In this case you cannot use them for further navigation or write them directly. This has to be done
by their supervisor object being connected to the server.

5HODWHG�SDWWHUQV

The atomic building blocks of Half-Object Assembly are the half-objects from +233 [Mesz] as
mentioned above. But note that the half-objects considered here hold an asymmetry because several
client half-objects can be connected to one server half-object. Therefore they could be called third-,
quarter-, fifth-objects and so on. In order not to overdo it and to refer to existing terminology they are
still called half-objects.

The communication handle of the half-objects stems from the 3UR[\ idea that is de-facto-standardized
in [CORBA]. It is discussed in a more general way in [GHJV]. In our case the half-objects can be
considered as a somehow "localized" form of &DFKH� 3UR[\ as described in [BMRSS] respectively
[Rohnert]. Whereas a cache proxy is considered alone and manages several objects at once, a half-
object is responsible for caching the data of one single object only. From the pure caching perspective
one half-object alone is rather primitive. The real benefit comes from the co-operation of many of
them.

All these methods semantically belong to a separate layer: the communication layer, a special case of
access layer. Embedding these methods within the application class corresponds to the architectural
pattern 0XOWLOD\HU�&ODVV (see [CoKe1]).

3DWWHUQ����7UDQVSRUW�0HFKDQLVP�9DULHW\

&RQWH[W

You are building a distributed information system and must distribute your application domain
objects between clients and servers. You are applying the Half-Object Assembly pattern for doing
this. Unfortunately you have a very fine grained object model or some integrity constraints between
different half-objects so that the standard data transport mechanism enforces either too many server
accesses or splits logical transactions which can eventually cause data inconsistencies.

3UREOHP

How can you avoid too many (fine grained) server accesses or splitting of logical transactions?

)RUFHV

7UDQVDFWLRQ�FRQWURO�RQ�FOLHQW�RU�VHUYHU" Splitting of logical transactions can be avoided if you open,
commit or rollback server (database) transactions explicitly on each client. These transactions will
then usually span several remote reading and writing messages between half-objects. But as
experience shows, this makes the system more complex and error prone. You have to consider
extreme situations like losing connection or client crashes while a transaction on the server still
remains open. You also have to maintain different transaction contexts in the server processes if they
are accessed by more than one client.

You should take as simple an approach as possible when building large industrial size information
systems. So it turnes out to be best to leave the transaction control completely on the server. This
means every remote call transporting data causes one transaction to be opened and closed before the
call returns. Therefore all server processes are stateless. Of course this means more complex and
comprehensive messages sent between half-objects.

&HQWUDOL]DWLRQ�YV�GLVWULEXWLRQ. When leaving the transaction control on the server you have to group
several half-objects to units that are read or written in one single step, causing only one single remote
message. You have to decide whether to implement a central control object that does the job of
collecting and decoding a set of half-objects or to distribute the responsibility among the half objects
themselves. Again, as in the forces section of the Half-Object Assembly pattern, a central module has
the advantage that the task is clearly modularized and does not burden the application classes. But it
sacrifices scaleability and should therefore be avoided in large systems.

So the best thing is to enhance the intelligence of those half-objects that are responsible for the data
transport units mentioned above. There are different options to what extent this enhancement is
appropriate. To avoid too much complexity, the authority of every half-object to change the standard
mechanism should be restricted to the objects "under its control", which generally means the objects
that can be accessed through it by navigation. In the frequent case of a tree-like structure this means
that the root of any subtree can influence solely the objects contained in the subtree.

6ROXWLRQ

There are two possibilities to solve the problem:

1. $GGLQJ� VHYHUDO� GLIIHUHQW� UHPRWH� PHWKRGV� WR� WKH� KDOI�REMHFWV. A half-object can use more
comprehensive reading and writing messages that treat a whole subtree emanating from it. This is
advisable if you have only a few different mechanisms in consideration. Be aware not to overload
the application classes with too much communication methods.

2. $SSO\LQJ� WKH�6WUDWHJ\�SDWWHUQ�>*+-9@. If you have to consider a lot of different remote reading
and writing policies (or need some runtime flexibility), implement them within separate strategy
objects.

(In the following let again HOn-C and HOn-S denote the client and server part of the half-object pair
with number Q.)

Of course, in both cases, HO1-S has to offer more comprehensive synchronization messages than in
the standard case above since now the synchronization of each half-object is carried out in one single
step by the root half-object HO1.

The second approach needs some explanation. As can be seen in figure 5, the strategy object
referenced by HO1-C is doing the job of coding and decoding all half-objects within the subtree under
HO1-C. The strategy object accesses these objects via a back-reference to HO1-C.

half
obj2

half
obj2

half
obj1

half
obj1

half
obj3

half
obj3

local
reference

local
reference

local
reference

local
reference

strategy local reference

at once synchronization
for half-objects 1-3

sync
control

sync
control

sync
control

server address space

client address space

sync
control

sync
control

sync channel

)LJ�����+DOI�REMHFW���XVLQJ�D�VWUDWHJ\�REMHFW�IRU�V\QFKURQL]LQJ�VHYHUDO�KDOI�REMHFWV�DW�RQFH

The solution with strategies can even be carried further. You can imagine to also equip HO1-S with a
strategy to retain the client/server symmetry. It is left to the designer whether to use strategies on the
server or not.

5HVXOWLQJ�FRQWH[W

1. $ELOLW\�WR�LPSOHPHQW�D�YDULHW\�RI�PHFKDQLVPV. With this approach you eliminate all drawbacks of
the half-objects’ standard protocol described above. In addition, a variety of other policies come
into mind, e.g. a locking mechanism for updates with pessimistic concurrency control, where all
the read objects are shared or even exclusively locked in the database. This strategy can be
combined with the "several objects at once" strategy to get extremely safe and comprehensive
transactions.

2. 5XQWLPH�IOH[LELOLW\. If you use the 6WUDWHJ\ approach you preserve runtime flexibility: At runtime
you can plug in different strategies for transaction and transmission of objects. The decision can
even be left to the user by offering different strategies within the user interface of the system. The
high-level code of the application is not affected since behavior changes dynamically.

3. ,QFUHDVHG�FRPSOH[LW\�RI� WKH� UHPRWH�PHWKRGV. One effect should not be underestimated. Whether
you implement the remote methods within the half-objects themselves or in separate strategy
classes, the code of these methods remains complex anyway because you have to (re-)construct an

object hierarchy from a more or less flat data structure and vice versa. If the (de-)coding is very
complex it is recommended to store it outdoors in a separate strategy class. By doing so the
application domain classes are kept from being overloaded with technical details and remain easy
to survey.

5HODWHG�SDWWHUQV

The 6WUDWHJ\ pattern is discussed in [GHJV]. In case of preserving logical transactions the strategy
object is a kind of transaction object as described in 5HODWLRQDO�'DWDEDVH�$FFHVV�/D\HU [CoKe2].

Acknowledgements

First I would like to thank Jim Coplien for shepherding this paper. His very insightful
remarks, his experience and energy in working helped me a lot in qualifying this paper for
EuroPLoP ’97.

Thanks also to Wolfgang Keller for pre-reviewing the paper several times before submission.

References

>&R.H�@ -��&ROGHZH\��:��.HOOHU: 0XOWLOD\HU�&ODVV, pre-print for the proceedings to PLoP96.

>&R.H�@ -��&ROGHZH\��:��.HOOHU: 5HODWLRQDO�'DWDEDVH�$FFHVV�/D\HU, pre-print for the proceedings to

PLoP96.

>%0566@)��%XVFKPDQQ��5��0HXQLHU��+��5RKQHUW��3��6RPPHUODG��0��6WDO: 3DWWHUQ�2ULHQWHG�6RIWZDUH
$UFKLWHFWXUH, J. Wiley & Sons 1996.

>&25%$@ 20*: 7KH�&RPPRQ�2EMHFW�5HTXHVW�%URNHU��$UFKLWHFWXUH�DQG�6SHFLILFDWLRQ, 5HYLVLRQ����, July

1995.

>&266@ 20*��&25%$VHUYLFHV��&RPPRQ�2EMHFW�6HUYLFHV�6SHFLILFDWLRQ,

5HYLVHG�(GLWLRQ, March 1995.

>'DWH@ &��-��'DWH��$Q�,QWURGXFWLRQ�WR�'DWDEDVH�6\VWHPV�92/�,, Addison Wesley 1985

>)U%U@ 0��)UHVH��)��%URGEHFN� &RPSXWHU�LQ�%�UR�XQG�9HUZDOWXQJ, Springer 1989

>*+-9@ (��*DPPD��5��+HOP��5��-RKQVRQ��-��9OLVVLGHV� 'HVLJQ�3DWWHUQV, Addison Wesley 1995

>,V'H@ 1��,VODP��0��'HYDUDNRQGD� $Q�(VVHQWLDO�'HVLJQ�3DWWHUQ�IRU�)DXOW�7ROHUDQW�'LVWULEXWHG�6WDWH
6KDULQJ, Communications of the ACM 39/10, October 1996

>0H\HU@ %��0H\HU� 5HXVDEOH�6RIWZDUH��7KH�%DVH�2EMHFW�2ULHQWHG�&RPSRQHQW�/LEUDULHV, Prentice Hall

1994

>0HV]@ *�� 0HV]DURV� +DOI�2EMHFW� �� 3URWRFRO� �+233�, Pattern Languages of Program Design,

Addison Wesley 1995, p. 129-132

>0R0D@ 7��-��0RZEUD\��5��&��0DOYHDX� &25%$�'HVLJQ�3DWWHUQV, J. Wiley & Sons 1997

>5RKQHUW@ +�� 5RKQHUW: 7KH� 3UR[\� 'HVLJQ� 3DWWHUQ� 5HYLVLWHG, Pattern Languages of Program Design,

Addison Wesley 1994, p. 105-118.

