
Patterns for Layered Object-Oriented Applications

Mauricio J. Vianna e Silva*1 Sergio Carvalho*1 John Kapson+

 * Laboratório de Metodos Formais, Dept. de Informática,
Pontificia Universidade Católica do Rio de Janeiro, R. Marques de São Vicente 225,

Rio de Janeiro, RJ, 22453-900, Brazil
email: mauricio@lmf-di.puc-rio.br, sergio@inf.puc-rio.br

+Spectrum Consulting Services, Inc., Illinois, USA
email: kapson@netcom.com

Abstract

Three-layered architectures (presentation, business and persistence levels) are sometimes
recommended when developing object-oriented applications. Using the increasingly popular fourth
generation languages, however, layering is difficult: business rules are usually embedded in user
interfaces, which may also directly access databases. In this paper, we present three patterns useful in
the construction of object oriented applications accessing relational databases via fourth generation
languages.

Motivation
With the increasing interest in object-oriented technology, many companies have started to worry
about how to store application business objects in databases. A natural approach to store objects
would be to use an object-oriented database system. However, in practice, many companies have
instead opted to use a relational database to store objects [Duhl96], as witnessed by the increasing
popularity of Fourth Generation Languages (4GL’s), such as Powerbuilder and Delphi.

By combining object-oriented technology and relational databases we have the advantages of both
worlds [Keat95]. However, this is not easy, and pattern languages have been proposed to bridge the
existing gap between the two technologies [Brow96a, Kell96]. The use of Fourth Generation
Languages (4GL’s), such as Powerbuilder and Delphi, further complicates matters, as these languages
do not encourage the object oriented modeling of business rules in a separate level. This in the long
run may lead into systems that are immensely expensive to maintain and enhance [Swam97].

A commonly suggested approach for the construction of complex applications is the separation of
application concerns in different layers [Busc96, Aars96, Hirs96]. This in turn brings about layer
communication and visibility issues: in the case of object oriented applications, how do different layer
objects communicate? Which objects are visible?

In this paper, we propose a set of patterns for object oriented applications using 4GL’s to access
relational databases. They address communication, visibility, reuse and layering issues. Our approach
extends the work proposed by [Kell96, Brow96a, Busc96], adding three patterns: Strong Layering,
Weak Layering, and Entity Broker. These patterns deal essentially with communication issues in
applications that have been partitioned into three layers: presentation, business, and persistence. They

1 This work was partly supported by CNPq, and was developed for the ARTS (Approach to Real-Time Software)
project. ARTS is an ongoing three year project contracted by EQUITEL (a SIEMENS company in Brazil) with
the Formal Methods Laboratory of the Catholic University in Rio de Janeiro.

have similar contexts and address the same problem, but offer different solutions with respect to the
forces at work.

Common Context:
The development of layered object oriented applications involving presentation, business and
persistence levels, using company data stored in an existing, proven, company-wide relational
database.
Application classes may be partitioned, according to their functionality, in separate layers. The first
layer deals with presentation aspects, such as capturing, displaying and formatting data; the second
layer deals with business aspects, such as enforcing the business rules and calculating values; and the
third layer deals with database aspects, being responsible for storing and retrieving data [Brow96b].

In all our patterns, the storage and retrieval of objects is done through a separate hierarchy of
persistence or data access classes, parallel to the hierarchy of business classes [Your95] (see Figure
1). Classes in this hierarchy should encapsulate any database access required by its associated
business class, providing a uniform object-oriented interface to the relational database.

Figure 1: The association between business and persistence classes

Thus, visual object-oriented applications using a business class Foo with a parallel persistence class
DBFooMgr, are organized in a layer structure with class FooUserInteface in the presentation layer,
class Foo in the business layer and class DBFooMgr in the persistence layer (see Figure 2).

Figure 2: Three-layered architecture

Common Problem:
What is a good approach to organize object oriented applications accessing relational databases via
4GL’s?

Layer 1 - Presentation FooUserInterface

Layer 2 - Business Foo

Layer 3 - Persistence DBFooMgr

databaseName
tableName

getFooObjects(lFoo)

DBFooMgr

DBPersistenceMgr

A : string
B: string

accessorA()
accessorB()

Foo

Common Forces:
As mentioned in [Kell96], besides performance and flexibility, obvious forces when handling
databases, the decoupling of applications from the physical database is essential. A good decoupling
facilitates not only domain modifications, imposed by new business rules, but also changes in the
database itself.
Decoupling is also the key when the same database must be accessed by users with different access
rights, each seeing a different set of interfaces; it is essential that all database presentations be
separated from its implementation. The same force suggests the modeling of business rules in yet
another level, since these may change independently of the database, and vice-versa.

Common Participants:
DBPersistenceMgr
• Defines abstract protocols for all persistence classes, such as Insert, Update, Delete; in short,

establishes the need, in all descendants, for the usual relational database operations.
DBFooMgr
• Specializes DBPersistenceMgr, and is associated to class Foo. For storing Foo objects, we

create methods in DBFooMgr that will receive either a single Foo object or a list of Foo
objects. Inside these methods we can use either embedded SQL statements to update the
database, or calls to stored procedures passing all attributes of the Foo objects as parameters.

• For recovering Foo objects, we create methods in DBFooMgr with parameters that will be used
to query the database and locate the corresponding tuple(s). The query in the database can be
done by using embedded SQL directly inside the method, or by calling a stored-procedure,
which may be more efficient[Agar95].

 Foo
• A business class. With the result of the query, we create the Foo object. Besides returning a

single object, DBFooMgr can also return a list of Foo objects created with the information
retrieved from a related table. Thus, browsing Foo objects in an interface is done by calling
DBFooMgr methods to return a list of objects and then by calling accessor methods defined in
class Foo.

FooUserInterface
• A class, or set of classes, constructed to present to the application’s user the functionality

required.

Pattern 1: Strong Layering

Also Known As:
Restricted Communication

Forces:
The main forces are the reuse, and maintenance of classes in all layers (particularly business classes),
which must be maximized. In contrast, the level of indirection introduced increases the overall
response time, especially when the layers are in separate physical locations.

Structure:

getFooObjects(lFoo)
A : string
B: string

$getFooObjects(lFoo)
accessorA()
accessorB()

DBFooMgr

displayAll()
display(...)

FooUser
Interface

Foo

Figure 3: Accessing Foo Data using Foo Class Method
Solution:
Allow the presentation layer class FooUserInterface to communicate only with class Foo in the
business layer, isolating the persistence layer from the presentation layer (see Figure 3). If the
interface wants to display information about Foo objects, it calls a class method in class Foo to return
a list of Foo objects, which in turn calls an instance method in class DBFooMgr (see Figure 4).

Figure 4: Behavior using Foo class methods

Benefits:
• This approach provides a nice isolation between the presentation and persistence layers, by forcing

all requests to be mediated by the business layer, enhancing the maintenance of these classes.
• Developers of new interfaces need only to know about business classes, isolated from

implementation specific classes.

Drawbacks:
• With this approach developers end up defining, in class Foo, methods that are responsible for

object persistence or data accesses, and which are not related to its business behavior.
• In addition, this approach may not be efficient when the objects in the layers are in separate

physical locations. This introduces one level of indirection for accessing Foo objects, because all
calls have to go through the business layer (class Foo).

Pattern 2: Weak Layering

Also Known As:
Relaxed Layering, Free Communication

Forces:
The main force motivating the use of this pattern is overall response time, which must be minimized.
Thus different layer objects may communicate at will, even though they belong to different layers,
have been designed by different teams, etc. As long as visibility is granted, free communication can
occur. This is common in 4GL’s, where user actions frequently result directly in database accesses.
In a strictly layered architecture (see next pattern) such visibility rights would be inexistent,
increasing overall response time.

FooUser
Interface

System
Boundary

select fooData
from FooTable

accessorB()

display(B)

display(A)

$getFooObjects
(lFoo)

accessorA()
...

Foo(fooData)

getFooObjects
(lFoo)

Foo DBFooMgr

displayAll()

Database

A contrasting force is design complexity, which increases when developers are required to know not
only about classes in their own layers, but also about classes in other layers. Other contrasting forces
are maintenance and learning effort, much more difficult since the layer separation is somewhat
relaxed via free communication rights. The same is true if layers are located in separate physical
locations.

Structure:

Figure 5: Accessing Foo data using classes Foo and DBFooMgr

Solution:
Allow the class FooUserInterface in the presentation layer to communicate directly with classes Foo
and DBFooMgr in the business and persistence layers, respectively (see Figure 5). If the interface
wants to display information about Foo objects, it calls a method in the DBFooMgr class to return a
list of objects and then it uses Foo’s accessor methods to get the information desired (see Figure 6).

Figure 6: Behavior using DBFooMgr directly

accessorA()
accessorB()

A : string
B: string

Foo

getFooObjects(lFoo)

DBFooMgr

displayAll()
display(...)

System
Boundary

FooUser
Interface

Foo DBFooMgr Database

displayAll()

select fooData
from FooTable

accessorB()

display(B)

display(A)

accessorA()
...

getFooObject
s

(lFoo)

Foo(fooData)

FooUser
Interface

Benefits:
• This approach may be efficient with respect to response time, especially when the objects in the

layers are in separate physical locations [Brow96b], since Foo objects can be stored/retrieved by
accessing the persistence layer directly.

• In addition, class Foo has only methods related to its business behavior, moving to its associated
persistence class DBFooMgr, the responsibility for implementing database accesses of retrieving
and storing Foo objects. Thus, this approach allows the class Foo to be pure and its subclasses to
inherit only business behavior, not polluting its interface with implementation details like
persistence methods.

Drawbacks:
• This approach is inflexible to changes in all levels, because application knowledge may not be

correctly localized. For example, a change in a business rule may not be captured by a direct
transaction between an interface and a persistence manager.

• The developer is required to know not only about business classes, but also about database
implementation classes. It does introduce several interactions among the classes in the layers,
creating tight couplings among them.

• Maintenance and learning costs increase accordingly, due to the weakening of the layered
architecture caused by free communication rights.

Pattern 3: Entity Broker

Forces:
Reuse and maintenance issues of presentation, business and persistence classes dominate design
decisions when this is the chosen organization. These forces are stronger when the implementation
system allows asynchronous messages sent to generic receivers (see Implementation below).

Another force to be considered has to do with the commitment to layered architectures we decide to
impose on the application: an entity broker actually introduces another dimension, another class
condensing the functionalities of a business object, its user interfaces, and persistence manager.

 Structure:

Figure 7: Accessing Foo data using a High Level Broker

Solution:
Introduce a new class that mediates the three layers. For instance, the interactions among
FooUserInterface, Foo and DBFooMgr are encapsulated in a new class, called the FooBroker (see
Figure 7), functioning similarly to the Mediator pattern [Gamm95].

getFooObjects(lFoo)

DBFooMgr

accessorA()
accessorB()

A : string
B: string

Foo

Foo
Broker

displayAll()
display(...)

FooUser
Interface

User interfaces communicate all requests to the business object broker, which in turn acts upon
classes Foo, DBFooManager and even the interfaces themselves (see Figure 8).

Figure 8: Behavior using a high level broker

Benefits:
• This solution facilitates the maintenance of each class managed by the broker. By decoupling

FooUserInterface from Foo and DBFooMgr, we localize changes to individual classes, reducing
the impact of any class change.

• In addition, the decoupling of classes allows them to vary independently, which enhances their
extensibility and reusability.

• A business object may have several interfaces, different presentations offered to users with
different access rights; this pattern facilitates the addition and removal of such interfaces.

Drawbacks:
• The broker may become very complex when it encapsulates several components, which interact in

many different ways.
• The broker may become difficult to maintain, because it is tightly coupled with the classes it

mediates.

Implementation:
The broker architecture has its benefits maximized when component objects may:
• Communicate with their brokers by sending them asynchronous messages.
• Refer to the broker using some reserved pronoun, such as PARENT.

In this way, we can develop presentation, business and data access classes as real black boxes,
facilitating for example interface changes. Reuse is maximized, since such classes can be placed in
other contexts without code changes. Brokers must of course be aware of the message sending
behavior of their components, in order to handle them accordingly.

Conclusions

select fooData
from FooTable

display(B)

display(A)
...

getFooObject
s

(lFoo)

create
(fooData)

accessorB()

accessorA()
...

System
Boundary

FooUser
Interface

 Foo
Broker

DBFooMgr

displayAll()

displayAll
(self)

DatabaseFoo

We described three patterns addressing general layer communication techniques, specializing their
use in the organization of object oriented applications accessing relational databases. In all, the main
concerns were reuse and maintenance, and overall response time.

In selecting a pattern from this set, one has to consider the cost of object communication in the
application (the overall response time) versus the need to reuse and maintain application classes.
From the point of view of presentation objects, important in fourth generation languages, a decision
process might go on like this:
• Should presentation objects only know about the existence of pools of business objects but be

isolated from the fact that a database exists? If so, then some form of class method for providing
access to this object pool can be provided, and the details of the DBFooMgr are hidden away
within the implementation of the Foo class; this can be done with Strong Layering.

• Should the presentation objects know about the concept of persistent storage and the fact the
objects need to be (re)created from some kind of database? If so, then use Weak Layering and let
the interface know about DBFooMgr.

• Should the presentation objects be independent of the business objects and the concept of a
persistent storage? If so, then use the Entity Broker approach to encapsulate their interactions.

Acknowledgments
We would like to thank our “shepherd” Jens Coldewey for his insightful and helpful comments.

References

[Aars96] A. Aarsten, D. Brugali, G. Menga, “Patterns for Three-Tier Client/Server Applications,”
In Pattern Languages of Programs (PloP), Monticello, Illinois, 1996.

[Agar95] S. Agarwal, C. Keene, and A. Keller, "Architecting Object Applications for High
Performance with Relational Databases," In OOPSLA Workshop on Object Database
Behavior, Benchmarks, and Performance, Austin, TX, October 1995.

[Brow96a] K. Brown, and B. Whitenack, “Crossing Chasm: A Pattern Language for Object-
RDBMS Integration,” In J. Vlissides, J. Coplien, and N. Kerth (eds.), Pattern Languages
of Program Design 2, Addison-Wesley, 1996, pp. 227-238.

[Brow96b] K. Brown, “Crossing Chasm: The Architectural Patterns,” In Pattern Languages of
Programs (PloP), Monticello, Illinois, 1996.

[Busc96] F. Buschmann, R. Meunier, P. Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns, John Wiley & Sons, 1996.

[Duhl96] J. Duhl, “Integrating Objects with Relational Data, “ In Object-Magazine, SIGS
Publication, March 1996, pp. 89-90.

[Gamm95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Hirs96] R. Hirschfeld, “Three-Tier Distribution Architecture,” In Pattern Languages of
Programs (PloP), Monticello, Illinois, 1996.

[Keat95] G. Keating, and J. Thomas, “The Winning Combination: Object/Relational Solutions,”
In Object-Magazine, SIGS Publication, September 1995, pp. 64-67.

[Kell93] A. Keller, R. Jensen, and S. Agarwal, "Persistence Software: Bridging Object-Oriented
Programming and Relational Databases," In ACM SIGMOD, May 1993.

[Kell96] W. Keller, and J. Coldewey, “Relational Database Access Layer,” In Pattern Languages
of Programs (PloP), Monticello, Illinois, 1996.

[Swam97] V. Swaminathan, and J. Storey, “Domain-Specific Frameworks,” In Object-Magazine,
SIGS Publication, April 1997, pp. 53-57.

[Your95] E. Yourdon, K. Whitehead, J. Thomann, K. Oppel, P. Nevermann, Mainstream Objects:
An Analysis and Design Approach for Business, Prentice Hall, 1995.

