
Passive Replicator:

A Design Pattern for Object Replication

Teresa Gon�calves and Ant�onio Rito Silva

INESC/IST Technical University of Lisbon

R. Alves Redol no9, 1000 Lisboa, PORTUGAL

Tel: +351-1-3100287, Fax: +351-1-3145843

ftsg,arsg@albertina.inesc.pt

Abstract

This paper describes a pattern for passive object replication in distributed systems. The

pattern provides support for the representation of replicated objects, the management of replicated

objects and the implementation of several replication policies. It decouples replication from

functionality and distribution. It supports di�erent replica consistency criteria.

1 Intent

The intent of the Passive Replicator Pattern is to allow the use of di�erent replication policies

for object replication according to the needs of the application being developed in terms of

performance/consistency. It allows the support of di�erent levels of performance and di�erent

consistency criteria. It decouples replication from functionality and distribution.

2 Motivation

2.1 Background

The reasons for developing this pattern are associated with the increasing use of distributed

systems and the associated requirements for application programmers and framework users

and developers. Replication is a technique widely used in distributed systems for increasing

availability, performance and fault-tolerance [AAH96]. Replication in object-oriented systems is

used in application areas such as:

� Replicated data management.

� Management of replicated computations.

� Distributed shared memory.

Objects are characterized by a set of values and its methods, so object replication can be

seen as a combination of data replication and execution replication. Object replication models

result from combining data replication models with execution replication models. In Object

Oriented Systems, data replication models are concerned with the consistency/availability of

objects state and execution replication models are concerned with application fault-tolerance.

If data is replicated at di�erent sites of a network and if sites are failure-independent then data

availability is enhanced. Under normal circumstances sites with replicated data can maintain

data consistency, i.e. all replicated data agrees on a single data value at any time (known as

strong consistency). If there are communication failures there is a potential for inconsistent

data. Data replication models vary according to the consistency and data availability they o�er.

Data replication models can be classi�ed into pessimistic (strong consistency), controlled

inconsistency (when updates are done to a replica and data consistency of the other replicas

does not need to be restored immediately) and optimistic (no consistency is assured, i.e. updates

to replicas can be done anywhere, anytime leading to data inconsistency between replicas).

Execution replication models enhance availability, tolerate Fail-stop failures and if the

execution is replicated and occurs in parallel it also provides guarantees of correct request

processing because it can o�ers guarantees against Byzantine-failures, also called arbitrary

fails. Execution replication models can be classi�ed into passive replication (Primary-backup

approach) [Budhiraja 93a] and active replication (State-machine approach) [Budhiraja 93b]. In

passive replication, methods are executed by one object at one node. The state of the object is

mirrored to other object replicas at certain execution points (checkpointing). A usual checkpoint

is the the end of the method execution. In active replication methods, are executed by all the

replicas.

Some data replication policies can be combined with the passive replication execution: ROWA

(read-one write all) where a read request can be satis�ed by reading any single copy of a

data item and a write request requires all copies to be written; Primary-Copy where a read

request can be satis�ed by any copy of a data item and a write request can only be satis�ed by

the primary copy; Quorum-Based where copies of a data item may be given a certain number

of votes each,a read/write request can only be satis�ed if the sum of the votes of the available

replicas is equal or higher than the read/write quorum value.

2.2 Example

Consider the example of a Shared Agenda with the following functionality:

� users can create, update and delete appointments and can also create, con�rm, shift and

cancel meetings, i.e. users can manage appointments and meetings. The di�erence between

meetings and appointments is that a meeting requires several participants, its creator and

other participants and an appointment requires a single participant.

� the agenda manager can create new users and delete existing ones.

Consider a Shared Agenda composed by two kinds of sessions:

� Manager session: that holds an Agenda Manager and allows the creation of new users

and the deletion of existing users.

� Agenda session: that allows users to manage appointments and meetings.

Figure 1 illustrates the structure of the Shared Agenda using a Booch class diagram [Booch 94].

An Agenda Manager is responsible for the manipulation of several agenda users. Each Agenda

User can have several Agenda Appointments and several Agenda Meetings. Both Manager

Session and Agenda Session will use the data of the Agenda Manager.

AgendaSchedule

AgendaAppointment

N N
AgendaManager

ManagerSession

AgendaSession

AgendaUser

AgendaMeeting

N

Figure 1: Diagram Structure of Shared Agenda

Figure 2 shows an example of the Shared Agenda where there are two Agenda Sessions

and a Manager Session using a common Agenda Manager. Agenda Sessions should allow the

consulting of Agenda Meetings, in which several users participates, without delays caused by the

use of remote data objects. So each Agenda Session should have local replicas of the meeting

data (in its own address space) allowing fast read access to the meeting data. Modi�cations

on the meeting data associated with an Agenda Session should be propagated to the Agenda

Manager associated with the Manager Session and to others Agenda Sessions local replicas

of meeting data.

User User

User

Meeting replicas Meeting replicas

Meeting replicas

Manager Session

Agenda Session Agenda Session

Figure 2: Shared Agenda

2.3 Problem

In many distributed systems, data access performance is critical. This is often solved using

replication-based approaches. Because the requirements for data consistency vary depending on

applications semantics, it is necessary to be able to support di�erent replication policies. How

can you design an approach to replication that supports di�erent policies?

2.4 Forces

The problem must consider the following forces:

� Access performance versus data consistency: The data access performance for read/

write operations can vary according to the data consistency expected by the user of the

application. Read access performance can be improved by reading local replicas of data.

If strong consistency is desired the write access on a replica implies that data updates

resulting from the write operation are propagated immediately to the other replicas of the

replica set. To achieve strong consistency it is also necessary to assure that operations are

serialized.

If controlled inconsistency models are used the write access on a replica does not imply

the immediate update of the other replicas. Data replicas of the same object can be

inconsistent allowing the user to specify when replicas consistency will be restored and the

resolution of updating conicts. Optimistic replication models allow write operations to

be executed on local replicas achieving write access performance.

The Shared Agenda is an example of a distributed application where read access performance

to meeting data can be improved by reading local data instead of remote data. This

example requires strong consistency of meeting data. Updates to meeting data should

be propagated immediately to other replicas because users should always have updated

information on their meetings.

Geographical Information Systems browsers deal with large amounts of data transfer. This

is an example of a distributed application where keeping data locally (local data caching)

means much faster access to data. Local cache copies are only updated when the client

requires an updated data version. In this example data inconsistency is prefered as a

means of gaining performance.

� Di�erent replication policies versus single replication policy: Application require-

ments may vary demanding the use of di�erent replication policies for di�erent objects.

Therefore the use of single policy solutions may not be appropriate.

Consider a Document Management System where it is possible to have di�erent document

types: private (only document creator can view and edit it), shared-read (several users

can view the document but only the document creator can edit it), shared (several users

can both view and edit the document). This is an example of a distributed application

where di�erent replication policies can be used to implement the shared-read and shared

document types.

� Flexibility versus e�ciency: The decoupling of replication issues from object functionality

allows adding and replacing replication policies without changing the object's implementation.

This increased exibility has costs in terms of e�ciency through the use of indirections.

2.5 Solution

The solution takes into account the forces named above.

The solution is a three-level structure for object replication, namely Policy-Generic, Policy-

Speci�c and Object-Speci�c. The solution provides an abstraction that allows the use of

several replication policies for the support of object replication as an approach to increase

performance. That abstraction must allow the de�nition of di�erent replication policies that may

implement di�erent data models of consistency. The Policy-Generic level of the pattern abstracts

what is common between replication solutions that implement di�erent replication consistency

criteria. It decouples the above abstraction from policies implementation. The Policy-Speci�c

level corresponds to the implementation of replication policies decoupled from application's

functionality. The Object-Speci�c level corresponds to the integration of application's functionality

with replication solutions implemented by the above levels.

3 Applicability

Use this pattern when:

� it is necessary to test several di�erent replication policies with minor changes to the code.

� it is necessary to use object-speci�c replication criteria. This pattern allows data inconsistency

between replicas of the same object allowing the user to specify when replicas consistency

is restored. For example the user can decided to restore replicas consistency only when

executing a particular operation.

4 Structure and Participants

The structure of the pattern is illustrated in Figure 3 as a Booch class diagram using the notation

referred in [Booch 94].

The pattern is structured into three di�erent levels:

� Policy-Generic: This level abstracts what is common to replication policies and should

be supported by a framework concerned with object replication.

� Policy-Speci�c: This level can be customized by programmers and allows the development

of several replication policies that may use di�erent consistency criteria.

� Object-Speci�c: This level is object speci�c, i.e. at this level classes implementation

are speci�ed and are integrated with the replication concern by specifying subclasses of

Specific Replica Manager and Operation.

A

A

Operation

Replicated Objects
Registry

register()

unregister()

1..N

1

Object
Manager for Object

Specific Replica

query()

modify()

Policy-Specific

Policy-Generic

Object-Specific

Replica Manager

Specific
Replica Manager

_data

modify
Operation

getData()
_data

Operation
query

stateTransfer()

query()
modify()
cloneReplica()

readFirst()
writeFirst()
writeReps()
restoreReps()

writePolicy()
readPolicy()

consistencyOne()
consistentReplica()
consistencyAll()

cloneReplica()

readFirst()
writeFirst()
writeReps()
restoreReps()

readPolicy()
writePolicy()
consistentReplica()
consistencyOne()
consistencyAll()

updateReplica()

stateTransfer()
readReplica()

replicas

1..N

setData()
modify()

updateReplica()
readReplica()
stateTransfer()

query()
updateReplica()
readReplica()

Figure 3: Diagram Structure of the Passive Object Replication Pattern

The participants are described below:

� Replicated Objects Registry: It maintains a registration of the sets of replicated

objects. Replicas belonging to the same replica set are identi�ed by a common designator

the Replica Object Identifier. This class is used by the Replica Manager objects to

interact with the set of replicas.

� Replica Manager: This class encapsulates replicated objects and abstracts di�erent

replication policies, that may use di�erent consistency criteria, to control the consistency/-

availability of replicated objects. There is one replica manager object associated with each

replicated object. The replicated objects are isolated from replication issues which are

handled by the corresponding replica manager object. The replica manager class has also

a list of references to all the other replica managers of the replica set. This list is used

basically to provide support to the implementation of replication policies.

The readFirst operation is used to calculate one replica object from the replica set

on which read methods will be executed. The writeFirst operation is similar to the

readFirst operation but calculates the replica object on which update methods will be

executed. The writeReps operation is used to calculate the replicas on which to checkpoint

the object state of the object updated by the updatemethod. The restoreReps is used to

calculate the replicas that may be inconsistent and should be updated when it is necessary

to restore replicas consistency. The readPolicy and writePolicy are template methods

used to implement respectively the read operation and write operation of a replication

policy. The consistentReplica is used to �nd out a consistent replica from which to copy

the consistent state when restoring replicas consistency. The consistencyAll operation

is used to restore the consistency of all replicas. The consistencyOne operation is used to

restore the consistency of one replica. The cloneReplica is used to support the cloning

of the object associated with one ReplicaManager object.

� Object: This class represents a speci�c (concrete) class which can be replicated. The

replicas of an object are instances of this class. Replicas of the same object are identi�ed

by a common designator the Replica Object Identifier and belong to the same replica

set. The data associated with an object is always manipulated by its methods. The

methods can be classi�ed into query (read) methods and update (write) methods.

� Speci�c Replica Manager: This class implements a speci�c replication policy providing

implementations for the readFirst, writeFirst, writeReps, restoreReps, readPolicy,

writePolicy, consistencyOne, consistencyAll and consistentReplica operations of

the speci�c policy. The speci�c policy data is de�ned here. There can be one or more of

these classes by policy.

� Operation: This class is used by a Specific Replica Manager class to encapsulate the

execution of di�erent methods (modify and query) of replicated objects as objects. This

class has methods like updateReplica, readReplica and stateTransfer. The method

updateReplica is responsible for executing a modify method on the replicated object and

saving the result on its data �elds. The method readReplica is responsible for executing a

query method. The method stateTransfer is responsible for state transfer, i.e. copying

the result saved in the data �elds to other replicated objects.

� modify Operation: This class is a derived class of the Operation class. The �elds of

this class are the �elds updated by the modify operation. This class has to implement

the methods for setting those �elds setData. The method readReplica is rede�ned as a

empty method.

� query Operation: This class is also a derived class of the Operation class. The �elds

of this class are the �elds used by the query operation and this �elds are returned by the

execution of the query. This class rede�nes the abstract methods updateReplica and

stateTransfer as empty methods.

� Speci�c Replica Manager for Object class: This class implements the interface

of the Object class. An application that wants to use the replicated object uses the

corresponding object of the Specific Replica Manager for Object Class. This class

controls the access to the replicated object. This class rede�nes the abstract method

cloneReplica for cloning an object.

5 Collaborations

The collaboration between participants can be seen by analyzing four main aspects: adding

replicated objects, executing non-updating and updating methods on replicated objects and

restoring the consistency of inconsistent replicated objects.

Specific Replica
Manager for Object

Object
rm:

o:

rro: Replicated Objects
Registry

Specific Replica

Manager for Object

rm*:

register(objName,rm)

new()

consistencyOne()

new (objName)

rm*=
consistentReplica()

cloneReplica(rm)

Figure 4: Collaboration among participants for adding a replicated object

5.1 Adding Replicated Objects

Figure 4 illustrates the collaboration between participants in the Passive Replication pattern

for creating a replicated object. This �gure shows that the process of creating a replicated

object corresponds basically to the creation of a replica manager, the registration of the object

in an instance of the class Replicated Objects Registry, the creation of an object that will

be associated with the above replica manager and the initialization of the replica calling the

consistencyOne method.

When the Specific Replica Manager for Object object calls the register operation

besides registering the Specific Replica Manager for Object class instance it also adds to

other replica managers (�eld replicas) of the "same" object a reference to the registered replica

manager.

The method consistencyOne is responsible for cloning an object initializing the �elds of the

replicated object, when it joins to the replica set, reading up-to-date �eld values by �nding out

the more recent replica. The method implementation is dependent on the policy used. In the

case of primary-copy replication policy it corresponds to initializing the replica with the values

obtained by reading the primary replica.

5.2 Executing Updating Methods

Figure 5 illustrates the collaboration between participants in the Passive Replication pattern for

executing an update method on a set of replicated objects. Figure 5 shows that only one replica

of the object executes the method invocation, updating the remaining replicas after the end of

the method invocation execution. These collaborations are divided into two phases:

1. Executing the method invocation by one replicated object: The execution of an

updating method using the Passive Object Replication begins with a call of the updating

member function on an instance of the Specific Replica Manager for Object class.

The instance of the Specific Replica Manager for Object is selected by invoking the

operation writeFirst. This function selects the replica on which the update method

operation is executed. Its result depends on the replication policy being used.

The update method function should be implemented by creating a new instance of the

Operation modify class with parameters values equal to the update parameters followed

by calling the writePolicy method with the created instance of Operation modify as

parameter. The implementation of the writePolicy method corresponds to reading the

update data information and executing the updating method on the replicated object

associated with the Specific Replica Manager for Object instance and saving the

result on the data structure associated with the Operation modify class instance.

2. State transferring for the remaining objects of the replica set: This phase

corresponds to updating a set of the remaining replicas of the replicated object updated

in phase 1, in order to preserve the consistency criteria. It calls the writeReps method

which returns the remaining replicas to be updated. This method returns di�erent results

depending on the replication policy being used. Each one of the replicas is updated with

the values recorded on the modify Operation structure on phase 1.

of
Execution

the
invocation
method
modify by
one
replicated
object

State
transfering
of the
remaining
objects
of the
replica
set

Manager for Object
rM: c:Specific Replica

modify(data)

writePolicy(c)

Operation
modify

new(data)

rM*= writeFirst()

updateReplica(rM*)

_data=getData()

list = writeReps()

for rM** in list
stateTransfer(rM**)

Specific ReplicarM**:Specific ReplicarM*:

setData(_data)

obj* = getObj()

Objectobj*:

obj** = getObj()

obj**:
Manager for Object

Object

modify(_data)

Manager for Object

Figure 5: Collaboration among participants for an updating method

5.3 Executing Querying Methods

Figure 6 illustrates the collaboration between participants in the Passive Replication pattern

for executing a non-update method. The execution of the operation corresponds to selecting a

replica on which the operation will be executed. The selection of the replica depends on the

replication policy used. In a primary-copy replication policy it can be the replica itself while in

a quorum replication policy it is a replica belonging to the replica quorum for the read operation

which has the greatest update number.

5.4 Restoring Replicas Consistency

Figure 7 illustrates the collaboration between participants in the Passive Replicator pattern for

restoring replicas consistency. The set of replicas updated by phase 2 of an update operation

may not be equal to all the remaining replicas of one replicated object updated by phase 1. As

such, some inconsistency between replicas of the same object may exist temporarily. The method

consistencyAll is responsible for cloning an object restoring the �elds of replicated objects,

Manager for Object

of
Execution

the
invocation
method

replicated
object

byone

rM:

query

Specific Replica

query()
new()

op:

Operation
query

obj= getObj()

readPolicy(op)

readReplica(rM*)

rM* = readFirst()

query()

rM*: Specific Replica
Manager for Object

obj: Object

getData()

Figure 6: Collaboration among participants for a query method

when it is executed. This method calls the consistentReplica to �nd out from which replica

it should copy the state. It calls the restoreReps to �nd out on which replicas consistency will

be restored.

rm*:

Manager for Object

Specific ReplicaSpecific Replica
Manager for Object

rm:

consistencyAll()

rm*=consistentReplica()

list = restoreReps()

for rm in list
cloneReplica(rm)

Figure 7: Collaboration among participants for restoring replicas consistency

6 Consequences

The pattern provides the following bene�ts:

� Low amount of application speci�c code related with the replication of objects :

To replicate objects using an implemented speci�c replication policy the programmer only

needs to develop the Specific Replica Manager for Object class and the Operation

class for each method operation of the class to which the replicated object belongs. The

development of this classes requires a low amount of code.

� Independence of the replication policy used: The replication of objects is independent

of the replication policy used. It is possible to try di�erent replication policies without

changing the application speci�c code related with the replication of objects, namely the

code necessary for the implementation of the classes Specific Replica Manager for

Object and Operation. For testing the application with di�erent replication policies it is

only necessary to change the Specific Replica Manager classes.

� Clear separation between the concrete objects and the Speci�c Replica Managers

for Objects: The concrete objects do not know that they are replicated. The pattern

encapsulates the concrete objects from replication issues such as the management of

replicated objects and the replication policy used.

� Decoupling from synchronization: The implementation of some replication policies

requires atomicity of the writePolicy operation when implementing some replication

policies, i.e either the writePolicy operation succeeds in all replicated objects or the

operation aborts. The synchronization is necessary also to assure that the result of

executing two concurrent operations is equal to executing the two operations sequentially.

The replication concern is presented in this paper isolated from operation atomicity and

concurrency control issues since these can be seen as separate concerns which can be

incorporated with the replication concern.

The pattern has the following drawbacks:

� Great number of classes: For each update and query method of each class it is necessary

to create a derived class of the Operation class. This can lead to a great number of classes.

� Fault-Tolerance: The Pattern for Passive Object Replication is not fault-tolerant. This

pattern does not tolerate fail-stop fails. The replication concern is presented here isolated

from fault-tolerance. This pattern can be used to improve read performance.

7 Implementation

This section describes several implementation variations of the pattern.

7.1 Policies

� Policy speci�c: Passive replication can use several di�erent replication policies and

models. Replication models describes the user�s expectations concerning consistency/avai-

lability of replicated objects:

{ pessimistic: the result of a reading operation on replicated objects always returns

the result of the last update. To implement a pessimistic policy it is necessary

that when changes are done to a replicated object using, passive replication,

that those changes are done atomically to all remaining replicated objects of the

replica set. To implement a particular policy one should de�ne a derived class from

Replica Manager, i.e de�ne a Specific Replica Manager class and rede�ne the

virtual methods of the super class.

To implement the ROWA (Read-One-Write-All) replication policy the readPolicy

should correspond to reading the replica accessed by the query method and the

writePolicy should correspond to writing the replica accessed by the update method

and transferring the updated state to the remaining replicas. The readPolicy

for this policy corresponds to calling the readReplica method with the parameter

returned by the readFirst method. The readFirst operation should return the

Replica Manager accessed by query. The writePolicy corresponds to calling the

updateReplicamethod with the parameter returned by the writeFirstmethod and

to call the stateTransfer method with the parameter returned by the writeReps

method. The writeFirst operation should return the Replica Manager accessed

by the update. The writeReps method should return all the remaining replicas

of the replica set which were not updated by the update call. The restoreReps

and consistencyAll should be de�ned as empty since this policy does not allow

inconsistency between replicas.

{ controlled inconsistency: when an update operation on a replicated object does

not immediately imply the update of the others replicas from the replicated object

set. A limit is established concerning data inconsistency above which consistency is

repaired calling the consistencyAll or consistencyOne method of the Specific

Replica Manager Class. Consider the implementation of a combined policy such

as Primary-Copy with controlled inconsistency where updates are always done on

the primary-copy and the consistency between primary-copy and secondary-copies is

restored only when executing a update operation X. To implement this replication

policy the readFirst and writeFirst operations should return respectively the

accessed Replica Manager by the query or update method and the Replica Manager

associated with the primary-copy. The writeReps operation should return an empty

list. This implies that the execution of update methods is not propagated to the

remaining replicas. The implementation of the X operation can be implemented as

the execution of the operation preceded by calling the consistencyAll operation.

The restoreReps operation returns all the Replica Managers associated with the

secondary-copies. The consistencyAll operation is implemented by copying the

state of the primary-copy object to all the replicas returned by the restoreReps.

{ optimistic: when an update operation can occur anywhere anytime. The availability

in this case is higher and the consistency is lower. To implement a particular policy

one should de�ne a derived class from Replica Manager, i.e. de�ne a Specific

Replica Manager class and rede�ne the virtual methods of the super class. In this

case replica updates do not need to be consistent. In case of conicting-updates the

conict resolution it is left to the implementation of consistencyAll.

� Object speci�c: The de�nition of Objects is isolated from the replication issues and these

can be de�ned independently of the rest. The integration of Objects with the replication

concern is done through the de�nition of a Specific Replica Manager for Object class

with the same interface of the Object. The implementation of query and update methods

corresponds to creating new Operations. It is necessary to implement the updateReplica,

readReplica and stateTransfer methods as illustrated in �gure 5 and 6.

7.2 Distribution integration

Distribution can be added to the pattern to support distributed replicated objects. The Replica

Manager class can be instrumented in order to support distribution of replicated objects. This

instrumentation consists of combining the Replica Manager class with distributed proxies [Silva 97]

such that the communication between distributed Replica Managers is done through distributed

proxies.

There are two possible ways for adding the distribution concern to the replication concern:

� by using delegation. The Replica Manager class will reference a distributed proxy. The

distributed proxy will be responsible by all the low level details involved with communications

encapsulating the communication mechanisms.

� by using inheritance. It will be needed to create a new class Distributed Replica

Manager derived from both Replica Manager and Proxy classes. Replication and distribution

can be achieved by using the Distributed Replica Manager class.

7.3 Synchronization integration

Synchronization can be added to the pattern to support the execution of concurrent operations

on replicated objects. This can be done by using a framework that supports concurrency

mechanisms such as locks or time stamps or by using the Customizable Object Synchronization

pattern [Silva 96].

8 Sample Code

8.1 Shared Agenda Application

In the Shared Agenda Application, replication will be applied to the agenda meetings.

The class AgendaMeetingInt represents the interface abstraction of class AgendaMeeting.

class AgendaMeetingInt

{

public:

virtual void addAgendaUser (AgendaUser* user) = 0;

virtual AgendaUser* getAgendaOwner(void) = 0;

};

Class ReplicaManagerPAgendaMeeting corresponds to the implementation of a Specific

Replica Manager for Object class, supporting the replication of class AgendaMeeting using

the Primary-Copy replication policy. This class implements the interface of the AgendaMeeting

class and accesses by the Shared Agenda Application are done through instances of this class.

class ReplicaManagerPAgendaMeeting:public PrimaryReplicaManager<AgendaMeeting>,public AgendaMeetingInt

{

public:

ReplicaManagerPAgendaMeeting (AgendaUser*,AgendaDate&,AgendaTime&, ReplicaObjectIdentifier);

void addAgendaUser (AgendaUser*);

AgendaUser* getAgendaOwner (void);

};

The update (write) method addAgendaUser is implemented by the replica manager as below:

void ReplicaManagerPAgendaMeeting::addAgendaUser(AgendaUser* agU)

{

addAgendaUserOperation c(agU);

writePolicy(&c);

}

The query (read) method getAgendaOwner is implemented by:

AgendaUser* ReplicaManagerPAgendaMeeting::getAgendaOwner(void)

{

getAgendaOwnerOperation c;

AgendaUser* owner;

readPolicy(&c);

owner = c.getAgendaOwner();

return owner;

}

To encapsulate the execution of the methods addAgendaUser and getAgendaOwner the

classes addAgendaUserOperation and getAgendaOwnerOperation had to be implemented one

for each method.

class addAgendaUserOperation: public Operation <AgendaMeeting>

{

private:

AgendaUser* _aUser;

public:

addAgendaUserOperation (AgendaUser*);

void updateReplica (ReplicaManager<AgendaMeeting>*);

void stateTransfer (ReplicaManager<AgendaMeeting>*);

void readReplica (ReplicaManager<AgendaMeeting>*);

};

class getAgendaOwnerOperation: public Operation <AgendaMeeting>

{

private:

AgendaUser* _aOwner;

public:

getAgendaOwnerOperation (void);

AgendaUser* getAgendaOwner (void);

void updateReplica (ReplicaManager<AgendaMeeting>*);

void stateTransfer (ReplicaManager<AgendaMeeting>*);

void readReplica (ReplicaManager<AgendaMeeting>*);

};

The method readReplica of class addAgendaUserOperation is implemented as an empty

method. The methods updateReplica and stateTransfer are implemented as below:

void addAgendaUserOperation::updateReplica(ReplicaManager<AgendaMeeting>* rM)

{

AgendaMeeting* obj;

obj = rM->getObj();

obj->addAgendaUser(_aUser);

}

void addAgendaUserOperation::stateTransfer(ReplicaManager<AgendaMeeting>* rM)

{

AgendaMeeting* obj;

obj = rM->getObj();

obj->addAgendaUser(_aUser);

}

The methods updateReplica and stateTransfer of class getAgendaOwnerOperation are

implemented as empty methods. The method of the class readReplica is implemented as below:

void getAgendaOwnerOperation::readReplica(ReplicaManager<AgendaMeeting>* rM)

{

AgendaMeeting* obj;

obj = rM->getObj();

_aOwner = obj->getAgendaOwner();

}

9 Known Uses

The usage of replication as a means of increasing data access performance is widely used in

Distributed Database Systems and in Distributed Systems. Most of the solutions provided in

these systems restrict the use of replication policies to a set of policies that can be supported

by the policy-speci�c level of this pattern.

Arjuna [MCL] is an example of an object-oriented programming system that supports object

replication to tolerate fails. The Arjuna supports the pessimistic data replication model and the

passive and active execution models.

This pattern was developed in the DASCo [Silva 95] scope. The replication concern is

considered with DASCo concerns of synchronization, distribution and naming.

10 Related Patterns

� Simple Shared Object Pattern [Ott 96] is a pattern for object replication across di�erent

address spaces using the primary-copy policy for replicating the objects with immediate

update (strong consistency). This pattern allows the use of the primary-copy replication

policy decoupled from application's functionality and distribution. This pattern can be

seen as a particular implementation of the Passive Replicator pattern integrated with

distribution where the policy used is the primary-copy policy and the copies belong to

di�erent address spaces. The Passive Replicator pattern allows, besides the primary-copy

policy the use of other replication policies that vary according to data consistency/access

performance that they o�er.

� Observer Pattern [Gamma 95] is a pattern that de�nes a one-to-many dependency between

objects so that when one object changes state, all its dependents are noti�ed and updated

independently. The primary-copy replication policy can be related with the Observer

pattern where the primary replica is the subject and the other replicas are the observers.

This pattern can be seen as a particular implementation of the Passive Replicator pattern

where the policy used is the primary-copy and distribution is not an issue.

This pattern does not decouple subject functionality from observer noti�cation. The

Passive Replicator pattern allows besides the implementation of the primary copy policy

the use of other replication policies and the consideration of the distribution concern.

� Command Pattern [Gamma 95] is used to implement the Operation class as an abstract

class which declares an interface for executing the Operation methods. It is used to

decouple the invocation from the knowledge to perform the execution.

� Singleton Pattern [Gamma 95] is used in the implementation of the Replicated Objects

Registry class.

11 Acknowledgments

The authors would like to thank Neil Harrison for his valuable comments during the shepherding

process.

References

[AAH96] Bharat B. Bhargava Abdelsalam A. Helal, Adbelsalam A. Heddaya. Replication

Techniques in Distributed Systems. Kluwer Academic Publishers, 1996.

[Booch 94] Grady Booch. Object-Oriented Analyis and Design with Applications. The
Benjamin/Cummings Publishing Company, Inc., 1994.

[Budhiraja 93a] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The primary-backup approach.
In S.J. Mullender, editor, Distributed Systems, 2nd Edition, ACM-Press, chapter 8.
Addison-Wesley, 1993.

[Budhiraja 93b] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. Replication management using
the state machine approach. In S.J. Mullender, editor, Distributed Systems, 2nd Edition,
ACM-Press, chapter 7. Addison-Wesley, 1993.

[Gamma 95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[MCL] Santosh K. Shrivastava Mark C. Little. Replicated K-Resilent Objects in Arjuna. IEEE.

[Ott 96] Robert Ott. Simple shared object. Object Currents, 1(3), March 1996.

[Silva 95] Ant�onio Rito Silva, Pedro Sousa, and Jos�e Alves Marques. Development of Distributed
Applications with Separation of Concerns. In Proceedings of the 1995 Asia-Paci�c

Software Engineering Conference, pages 168{177, Brisbane, Australia, December 1995.

[Silva 96] Ant�onio Rito Silva, Jo~ao Pereira, and Jos�e Alves Marques. Customizable Object
Synchronization Pattern. In The 1st European Conference on Pattern Languages of

Programming, EuroPLoP '96 (Washington University technical report #WUCS-97-07),
Kloster Irsee, Germany, July 1996.

[Silva 97] Ant�onio Rito Silva, Francisco Assis Rosa, and Teresa Gon�calves. Distributed Proxy: A
Design Pattern for Distributed Object Communication, September 1997. Submitted to
the Fourth Conference on Pattern Languages of Programs, PLoP '97.

