
Undertaker
FINAL DRAFT SUBMISSION EPLOP-97, June 6 1997.

Björn Eiderbäck and Jiarong Li
IPLab, NADA, KTH
S-100 44 Stockholm, Sweden
email: {bjorne, li}@nada.kth.se
Phone: +46-8-790 6277
Fax: +46-8-790 0930

Abstract

In this paper we will describe the pattern Undertaker aimed at handling dangling references
to objects which not are recognized as garbage by the environments ordinary reclamation fa-
cilities. The context of the work is an environment which comprises a garbage collector, as
Smalltalk or Java, but we believe that this pattern more generally could be applicable to en-
vironments without such services, as C++.

1 Introduction

This particular work was originally driven by efforts to utilizing the VisualWorks
(ParcPlace 1992, ParcPlace-Digitalk 1995a) Smalltalk environment with distribu-
tion facilities (Eiderbäck 1993). The development of a distributed applications is well
known to be a difficult task. The debugging, modification maintenance of such appli-
cations are even harder. Another difficulty is that the interface building techniques
not are matured enough yet and even the most spread Interface Builders are likely
to be changed and improved. One way to overcome some of the difficulties is to de-
velop one’s own distributed interface builder—but if developing such tools not is your
premiere issue then this certainly is a too big endeavour and if we also want to get
benefits from standardised components this approach is even more insufficient.

In this paper we will describe a pattern which we have named the Undertaker pat-
tern. This pattern is an important component in our strive to add distribution facil-
ities to the VisualWorks environment in general and in efforts to augment the
interface and application builder with distribution and persistence mechanisms in
particular.

Throughout the paper we assume that the readers are familiar with the patterns
in the book Design Patterns: Elements of Reusable Object-Oriented Software (Gamma
et al 1995).

1.1 Background

We have developed a distribution package, MultiGossip (MG) (Eiderbäck 1993), on
top of VisualWorks. The package is completely written in Smalltalk and our aim is
to provide programmers with seamless and reflexive distribution mechanisms for all
kinds of objects. A particular goal was to enable experimentation of Computer Sup-
ported Cooperative Work (CSCW) applications. This latter goal made it particularly
admirable to integrate distribution facilities into the application builder of the envi-
ronment.

1.2 The Environment

Smalltalk is a language with a common root class, Object , therefore we can augment
all objects’ behaviour by adding methods to Object . VisualWorks comprises a wide
set of basic patterns and the publisher-subscriber pattern (also known as the observ-
er pattern) is even defined in the root class—and thereby ready for use by all objects.
The adapter pattern—another important ingredient in the Undertaker pattern—is
as all other objects in VisualWorks available with all its source code and thereby
ready for inspection and rapid extension (or specialization) by subclassing.

1.3 The Problem

Smalltalk comes with a reclamation facility which includes a scavenger and garbage
collector. The intention of them is to automatically reclaim space occupied by objects
that are no longer accessible. Thereby the programmers are liberated from the bur-
den of explicitly freeing the memory.

Those reclamation facilities rely on strong pointers, defined as follows:

Definition: strong pointer

A strong pointer is a reference to an object that not could be broken by any of the virtual
machine’s garbage collection mechanisms. The closure of strong pointers is transitive, i.e.
no object reachable through strong pointers from the system roots is garbage collected.

This kind of referencing mechanism is preferable in most situations but sometimes
one needs to reference an object through a reference anonymous to the garbage col-
lection facilities, for instance to inspect the behaviour of objects in an application
(without affecting any strong pointers whatsoever). In Smalltalk it is possible to ben-
efit from such weak pointers by indirectly referring objects through a special purpos-
es container—a weak array.

A benefit with Smalltalk’s weak arrays is that as soon as one of the referred ob-
jects is reclaimed (as a result of strong pointers to it having expired) all objects in an
“subscriber position” of the weak array are informed.

In the pattern description we demonstrate how we can use the above described
features of a weak array, i.e. weak pointers and information to subscribers upon ob-
ject reclamation, in combination with an extended value holder (ParcPlace-
Digitalk 1995a) and a new change manager, see the implementation discussion of
the observer pattern in (Gamma et al 1995).

2 The Undertaker Pattern

Name

Undertaker

Intent

• Provide publishers with facilities to reclaim references to subscribers that have
ceased to exist without informing the publisher.

• Enable reuse of components that not are constructed with the possibility to sur-
vive while any of its subscribers disappears.

• Free programmers from the burden of explicitly freeing memory from objects
that not are considered garbage by the reclamation facilities but still have
turned into obsolete ones.

• Another very important intention is to provide mechanisms which let designers
and programmers focus on the structure of their application domain. This is es-
sentially achieved by encapsulating specialities in special purpose objects and
modules.

Motivation

In our work in utilizing an environment comprising a wide set of classes and sev-
eral tools aimed at designing both conventional and interactive graphical applica-
tions with distribution and persistence facilities we have encountered several
problems. An important one, especially if we require seamless integration of the
new capabilities, is that the system’s ordinary reclamation facility under certain
circumstances is unable to recognise some references as obsolete even if the re-
ferred object has ceased to exist.

In context of VisualWorks the problem can be formulated as follows:

PROBLEM: the problem with dangling references

Visual components in applications built with the application builder of VisualWorks
are related to the models as subscribers to vital changes of them. On expiration of the
application the visual components are not released from the models’ (publishers’) lists
of dependants (subscribers). This is not a problem if the model and visual component
simultaneously cease to exist (as in conventionally fabricated applications). But in a sit-
uation where the models alternatively are persistent or distributed we need to reclaim
objects from the list of subscribers whenever this happens. Otherwise update-messages
will be transmitted to non existing or obsolete objects, with a high risk of damaging the
whole environment.

One solution is to force the programmers to explicitly release all dangling refer-
ences upon termination of applications but this is not a particularly satisfactory
approach—it is well known that the risk for memory leaks increases if the burden
of freeing objects and memory is devoted to the programmer! Further the require-
ment of fabricating fancy garbage collection mechanisms is neither a central issue
in application development and will most likely distract the programmer from fo-
cusing on important application issues. By the undertaker pattern on the other
hand we can reuse existing components and still enjoy automatic and proper re-
lease of subscribers from the publishers’ lists of subscribers.

In the following situations we would also benefit from the Undertaker pattern
since it could hide the details from the applications’ code:

• Sometimes it is hard or even impossible to know exactly when a referred entity,
such as an object located in a shared file or one situated in a remote (passive)
domain, has become obsolete without continuously polling all external units.

• To maximize flexibility and adaptability of applications, e.g. as in one situation
use a replica of shared entity but not in another.

• In some situations it is not important where the referred object is located—e.g.
in memory or at a remote host—but still it is desirable to interact with the ob-
ject in a way that is independent of it actual location.

As another example graphical presentation objects (i.e. views and in some sense
controllers) in applications built with the application builder of VisualWorks are
related to the components (i.e. to their models) as subscribers to important chang-
es. In applications built in the ordinary (intended?) way the scope of the compo-
nents is within a single domain and the programmer has to explicitly define if a
component is to be shared among several interfaces. By this approach the pro-
grammer should be relatively aware of dependencies among interfaces and he/she
is also responsible to break references to parts of interfaces that are not valid any
longer.

In Smalltalk objects that are not referred to by any object in the running context
are garbage collected. This means that a “final” break always takes place at the
end of an application since both interface presentation objects and their models
are within the same scope, i.e. they are not reachable any longer and considered
garbage. But in applications built with the application builder in the usual man-
ner there is no easy way of defining objects as shared or persistent—the program-
mer must provide code for such situations explicitly. If we still decides to use such
facilities we want to reuse as many as possible of the widgets and essential parts
of the code that the framework provides us. The main problem with this solution
is that when an application ceases to exist the publishers are not informed about
their subscribers’ decease, this is due to inherited behaviour of the widgets, and
since the publishers are persistent we have a problem with dangling references to
presentation components. One solution to this problem is to change some basic
components. This is not attractive since we risk that it would be hard to use new
components or harmonize them with new features and releases of the system. So
we want a solution that changes as little as possible and reuses as much as prac-
tical of the existing environment.

Applicability

This pattern can be used in a variety of situations where some objects require to
be informed of other objects’ expiration. It is especially useful in combination with
the publisher-subscriber (or observer) pattern or if it is impossible (or unsuitable)
to change the involved objects’ interface or behaviour to better fit the actual situ-
ation.

The pattern is also applicable in the following situations:

• While adding reclamation of subscribers facilities to publishers where the sub-
scribers not inform the publisher upon reclamation.

• In utilizing the environment with basic mechanisms that simplifies migration
and distribution of objects with minor impact on the applications’ code.

• To provide bookkeeping of temporal entities which are to be freed if not referred
any longer. A temporal entity could for instance be a socket connection or a ref-
erence to a file.

Structure

In VisualWorks\Smalltalk there is a class ValueHolder which is devoted to “tak-
ing care” of a value and its changes. The value holder could be said to take the
same role as an active value found in some other systems. Objects interested in
changes to the particular value declares themselves as subscribers to the value
holder—which thereafter takes the role of a publisher.

The principles of the ordinary relation between a value holder and visual compo-
nents is depicted in figure 1. Brighter colored smoother arrows and comments are
used to specifically emphasize the publisher, the concrete subscribers and the re-
ceiver. Especially note that the visual component is explicitly dependent on the
publisher—through a model-view relation inherited from the Model-View-Con-
troller concept (Lewis 1995, Buschmann et al 1996)—and that typically an appli-

cation is implicitly dependent on the publisher—through an instance of
ChangeManager .

In figure 2 we have depicted a typical scenario involving an application, a value
holder and its visual component, and the change manager intended to filter and
mediate changes to the application.

For a complete description of this “pattern” we refer the interested reader to (Parc-
Place-Digitalk 1995a) for details.

FIGURE 1 The value holder and visual component relation of VisualWorks

FIGURE 2 Message trace diagram for the collaboration between a value holder, a change man-
ager and an application

if the publisher signals that my aspect is changed
then receiver->selector(arguments)

ChangeManager

receiver
aspect
selector
update:with:from:

Object

receiver

VisualComponent

ValueHolder

subject

subscribers

model

(publisher)

Application

(subscriber)

(subscriber)

Application
(a)

VisualComponent
(vc)

ValueHolder
(vh)

ChangeManager
(cm)

create vh

create vc on vh and

declare interest in
certain changes create a change manager

Set up

value: newValue

add vh as dependent on vc

to mediate changes from vh to a

notify

vh is changed by
some object

send the message selector to
the receiver (a)

refresh

The enhanced (undertaker-) structure look pretty much the same as the one of the
previous figure and is depicted in figure 3. For brevity we have collapsed the dia-
gram and only included the most essential parts.

Participants

• Publisher-subscriber, or observer—the undertaker pattern inherits services
from the Publisher-subscriber pattern in general and the ChangeManager in
particular.

• Undertaker —subclass of a ChangeManager mediates the coupling from the pub-
lisher (ValueHolderAttendant) to the subscriber (VisualComponent).

• ValueHolderAttendant —encapsulates the subject (i.e. the value) and knows
how to handle dependencies and updates. It knows in particular how to react
upon expiration of the visual component.

• WeakArray —is automatically dependent (subscriber) on the Object Engine and
is informed if any of its elements expires.

• Object Engine—a system component that controls the lives of the objects.

FIGURE 3 Undertaker structure

if the receiver’s component expires
then client ->elementExpiredFor: self
otherwise super->update:with:from:

Undertaker

client
update:with:from:

WeakArray

receiver

subscriber

VisualComponent

ValueHolderAttendant

elementExpiredFor:

subscribers

client

model 1

Object Engine

subscribers

ChangeManagerValueHolder

Object

Collaborations

The components makes themselves dependent on ValueHolderAttendant and it
will in turn use the undertaker to take care of its subscribers.

The subscriptions on the value holder is indirect through the Undertaker , the un-
dertaker creates a WeakArray assign the VisualComponent to it and makes itself
subscriber to changes of it. The WeakArray will automatically be dependent on the
Object Engine .

If the VisualComponent ceases to exist the Object Engine notifies all WeakArrays
that have the VisualComponent as one of its elements. Since the Undertaker in
turn is subscriber to changes of the WeakArray it is also notified. Then, finally, the
ValueHolderAttendant is informed and is able to take appropriate actions.

Consequences

All the consequences of the publisher-subscriber pattern, i.e. abstract coupling be-
tween publisher and subscriber, support for broadcast communication and a risk
for unexpected updates, are also valid for the undertaker pattern.

FIGURE 4 Message trace for the Undertaker

WeakArray
(wa)

Visual-
Component

(vc)

ValueHolder-
Attendant

(vh)

Set up

vh is changed by
some object

Undertaker
(u)

Object Engine
(oe)

vc disappears

Application
(a)

value: newValue notify refresh

send the message selector to
the receiver (a)

elementExpiredFor: vc
notify

notify

vc becomes obsolete which the oe is aware of

create vh

create vc on vh and

declare

certain changescreate a undertaker to mediate

add vh as dependent on vc

 changes from vh to a

interest in

create wa
and declare¨
u as sub-
scriber

oe automatically
becomes aware
of wa

as in figure 2!

Further benefits and liabilities of the Undertaker pattern include the following:

1. solves the dangling references problem.

2. supports remoteness of objects. Since the “real” objects only are implicitly de-
pendent on each other we could more easily, than in for instance the publish-
er-subscriber pattern, hide the location of the publisher, e.g. by replacing the
ValueHolderAttendant with a proxy.

3. delayed notification of object finalization. In some systems there could be a
delay between the time we deference the concrete subscriber and the time
the undertaker is informed (usually when the next garbage collection oc-
curs). Then their is a risk that the publisher list of subscribers will contain
obsolete objects.

Implementation

Given the publisher-subscriber pattern with a ChangeManager the undertaker is
quite straight forward in a system that provides a specific object finalization facil-
ity, as VisualWorks (ParcPlace-Digitalk 1995a) and VisualSmalltalk (ParcPlace-
Digitalk 1995a).

In this particular implementation we have decided to use one WeakArray for each
pair of Undertaker and VisualComponent (see figure 3—i.e. the arity of the aggre-
gation). With minor modifications we could instead use the same WeakArray for
several pairs of Undertaker and VisualComponent .

Sample code

We define the ValueHolderAttendant as subclass of ValueHolder (to enjoy all the
superclass’ benefits).

ValueHolder subclass: #ValueHolderAttendant

As an alternative to inheritance an object adapter could be used.

The following message elementExpiredFor: will be sent from the subscriber if it
ceases to exist. Here we simply remove the subscriber from the register of depend-
ants.

elementExpiredFor: aDep
self removeDependent: aDep

The following two methods only differs from the methods in the superclass in that
they instead of handling a DependencyTransformer , i.e. the inherited change
manager, also takes care of cases where the subscriber is a Undertaker . The first
of the methods takes care of objects that declare interests in specific changes to
the receiver.

expressInterestIn: anAspect for: client sendBack: aSelector
"Arrange to receive a message with aSelector when anAspect
changes
at client"
| undertaker |
undertaker := Undertaker new.
undertaker

setReceiver: client
aspect: anAspect
selector: aSelector
for: self.

self addDependent: undertaker

And the second method retracts a specific interest.

retractInterestIn: anAspect for: anObject
"Undo a send of expressInterestIn:for:sendBack:"
| deps |
deps := self myDependents.
deps == nil ifTrue: [^self].
((deps isKindOf: DependencyTransformer) and:

[deps matches: anObject forAspect: anAspect])
ifTrue: [^self removeDependent: deps].

(deps class == DependentsCollection) ifFalse: [^self].
1 to: deps size do:

[:i | | dep |
dep := deps at: i.
((dep isKindOf: DependencyTransformer) and:

[dep matches: anObject forAspect: anAspect])
ifTrue: [^self removeDependent: dep]]

The enhanced change manager—Undertaker —is defined in the following way:

DependencyTransformer subclass: #Undertaker
instanceVariableNames: 'client '

The instance variable client will point to the original publisher (i.e the value
holder) and the inherited instance variable receiver will be assigned to a weak
array only containing aReceiver (which is the visual component). In Dependen-
cyTransformer the receiver is pointing directly to a aReceiver and the knowl-
edge about the original publisher is absent.

setReceiver: aReceiver aspect: anAspect selector: aSymbol for: aClient
receiver := WeakArray with: aReceiver.
receiver addDependent: self.
client := aClient.
… assign call-back method and check if the arity of it is valid …

The next method takes care of both ordinary changes and expiration of the receiv-
er.

update: anAspect with: parameters from: anObject
(anObject == receiver and: [anAspect = #ElementExpired])

ifTrue: [^client elementExpiredFor: self].
“The rest of the method is in principle equivalent to the
superclass’ update:with:from:”
aspect == anAspect ifFalse: [^self].
… Send the chosen call-back method to (receiver at: 1) …

Finally to get everything working we had to override the following method which
is used while retracting interests from the value holder.

matches: anObject forAspect: anAspect
^(receiver at: 1) == anObject and: [aspect == anAspect]

Since the interest in changes to a value holder is so common the ValueHolder pro-
vides the following method, where the client not is forced to remember the value
holder’s particular change-trigger #value .

onChangeSend: aSymbol to: anObject
"Arrange to receive a message with aSymbol when the value aspect
changes on anObject."
self

expressInterestIn: #value
for: anObject
sendBack: aSymbol

By inheritance this more convenient message is immediately applicable for the
undertaker’s ValueHolderAttendant.

Known Uses

We have used the undertaker to enhance the application builder of VisualWorks
with persistence and distribution services. Here we used the undertaker to re-
claim obsolete references from persistent or remote objects to applications devel-
oped by the application builder (normally caused by the termination of the
application).

Besides using this pattern in utilizing the application builder of VisualWorks we
have used it for handling references to external units, as files and in servers to for
instance inform interested participants if an client connection is released, expired
or by some other reason becomes corrupted. This approach is used in MultiGossip
(Eiderbäck 1993) to both control the system as such, e.g. in browsers aimed at con-
trolling connections, and in more mundane services as transparently managing
objects situated in files.

Another useful type of situation is while several clients share a specific unit and
this unit requires that only one client at a time uses its services. If it is important
that each client not unnecessary possesses the unit we must in some way arrange
for the client to “give the unit back”. We have successfully used the undertaker in
such a situation for developing a sound manager at a UNIX platform (where the
audio port only could be owned by one client at a time).

Related Patterns

Publisher-Subscriber—the undertaker is an enhancement of the publisher-sub-
scriber pattern.

Adapter—a specific adapter could be made to behave like an undertaker.

Mediator—also posses a loose coupling between the involved objects.

3 Summary and Conclusions

We have described the pattern undertaker and outlined how it can be used to solve
problems with dangling references. By using this pattern in utilizing the Visual-
Works environment with distribution and persistence facilities we have been able to
hide implementation details from the application programmer and thereby let him/
her focus on problems in the application’s domain instead.

In languages with no reclamation facility built into the environment it would cer-
tainly be straight forward to incorporate the Undertaker pattern by first adding an
idiom such as the counted pointer—described in (Buschmann et al 1996)—to the en-
vironment.

4 Future Work

This work has taken place as an effort to solve a particular problem within a specific
domain, i.e. within VisualWorks. Although we believe that it would be of interest to
generalize upon the description of the pattern, by for instance, investigate what it
takes to implement it by means of Java with in many senses enjoys similar seman-
tics and class library as Smalltalk’s.

References

Eiderbäck 1993 Eiderbäck, B. and Hägglund, P. MultiGossip – a General
Distribution Package in Smalltalk, in Proc. of the First Inter-
national Conference on Multi-Media Modelling, Singapore,
Nov 9-12, 1993, pp. 293-307.

Buschmann et al 1996 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P. and Stal, M. Pattern - Oriented Software Architecture A
System of Patterns, Wiley, 1996.

Gamma et al 1995 Gamma, E., Helm, R., Johnson, R. and Vlissides, J. De-
sign Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

Lewis 1995 Lewis, S. The Art and Science of Smalltalk, Prentice Hall,
1995.

ParcPlace 1992 ParcPlace Systems Inc. ParcPlace VisualWorks\Smalltalk-
80, ver. 1.0, 1992.

ParcPlace-
Digitalk 1995a

ParcPlace-Digitalk Inc. VisualWorks\Smalltalk-80, ver.
2.5, 1995.

ParcPlace-
Digitalk 1995b

ParcPlace-Digitalk Inc. VisualWave, ver. 1.0, 1995.

ParcPlace-
Digitalk 1995c

ParcPlace-Digitalk Inc. VisualSmalltalk Enterprise, ver.
3.1, 1995.

