
Network: A Pattern for Composing Computation

Abstract:
In Oticons software product for fitting hearing aids OtiSet there’s a need to simulate the digital
hearing aids performance under different conditions (traffic noise, loud speech etc.). Simulating the
hearing aids implies simulation of discrete components organized in a network through which the
representation of sound i.e. the signal propagates. Each component performs a computation on the
signal e.g. filtering (of frequencies), Volume Control (amplification) etc. It’s desirable if the
software were capable of reusing the components.

I’ve looked for patterns that could be used because I was sure I wasn’t the first to deal with this
problem of composing computation. The relevant patterns that I came across (see reference) didn’t
have any code examples, and tended to be high-level, vague, describing and categorizing using a lot
of options.
In this paper I’ve decided to describe a pattern with coding examples, and have chosen some of the
options in the hope that it will be easier for people to build something based on this more concrete
pattern description.

Intent
Describe a computation by a network of black-box components. Data streams through the network,
with each component taking data from its inputs and delivering it to its outputs. The network
connects output from one component to the input of another.

Also Known As
Pipes and Filters, Pipeline

Motivation
Computation is often organized as a network of components taking input and delivering output
without changing their own state. An example of computations organized as a network is the
simulation of Digital Signal Processing (DSP). DSP is concerned with the representation of signals
by sequences of numbers or symbols and the processing of these sequences.
An example of a DSP is the chip in a modern programmable digital hearing aid which transforms
the input sound into a digital signal, processes the signal and transforming the resulting digital
signal into sound again providing better hearing for the hearing impaired person.
The chip consists of various discrete components that are connected to each other. A simplified
example is shown in Figure 1 where each box represents a discrete manipulation or computation.
Information flow between two boxes is called a signal. Signals can branch out to different
components as shown with the output from the VolumeControl and a single component can
gather several signals as shown with the Adder .

Adder

LF Filter

HF Filter

LF
Volume
Control

HF
Volume
Control

Volume
Control

Micro-
phone

Output

LF-Channel

HF-Channel

Figure 1, A DSP network

In general, a network computes a function based on its components. For example, the output of
Figure 1, can be described in a Lisp-like way as:

Output = Adder(LFChannel(VolumeControl(Microphone())),
 HFChannel(VolumeControl(Microphone())))

Equation 1, Output relation

In Equation 1 the outermost function is Adder then LFChannel and HFChannel which
indicates that computation uses some kind of backwards propagation. The Network pattern should
do the same, meaning that Adder asks for a result in LFChannel and HFChannel and so
forth. This requires that the output of LFChannel and HFChannel be unified with the input to
Adder .

Networks support hierarchical decomposition. The LFChannel (LF = Low Frequency) and the
HFChannel (HF = High Frequency) are composite components containing an internal network.
The internal network or sub-network is composed of a filter and a volume control and the relation
of Equation 2 applies.

LFChannel(input) = LFVolumeControl(LFFilter(input))
HFChannel(input) = HFVolumeControl(HFFilter(input))

Equation 2, Sub-network relations

Instead of having a mediator handling everything centrally, the Network pattern distributes
responsibility of flow to each class. Each component knows the components that produce the
signals it uses, but not the ones that use the signals it produces. The network produces output by
having Adder ask LFChannel and HFChannel for output, and they in turn ask
VolumeControl which they both depend upon. The VolumeControl ask the
Microphone for output before computing and delivering its own output to LFChannel and
HFChannel .

The network must not be cyclic, thus the network can be seen as a set of interconnected
components organized in a Directed Acyclic Graph (DAG).

The information flow or signal between the components is a separate class hierarchy that allow for
different kinds of information to flow between the components. Each Component derived class (see
Figure 2) has its own Signal that is the output from that class.

The network class (see Figure 2), which acts as a kind of facade (see ref [Gam95], facade pattern),
is responsible for the high-level interface to the network, including construction and destruction of
components, and initialization of the input before querying the output.

The network class must know where to place output and where the input can be fetched.
Components that provide the input are called starters and the components that provide the output
are denoted ends. A network pattern implementation can start and end in several components.
However, all starter components on which the end components depend must have been initialized.

Applicability
Use the Network pattern

• to perform a computation consisting of smaller interconnected parts
• to enable reuse of computational parts by sharing an interface
• to distribute responsibility of the flow
• to allow for dynamic connectivity of a computation

 Structure

Connector Signal1 Signal2

*
Network Signal

*

Composite

* Connects to

Component
*

*

*

 Figure 2, structure

When compared with Figure 1 the Adder , VolumeControl , Microphone , LFFilter
 are all representatives of the Connector class, LFChannel and HFChannel are representatives
of the Composite class.

 Participants
• Network

 Is responsible for setting up the structure that is the network i.e. creating the components
and making the connections.
 Acts as a high level interface environment including providing the input and querying the
output.

• Component

 Declares the interface for objects in the composition
 Implements default behaviour for the interface common to all classes

• Composite
 Defines behaviour for components that consist of other components
 Abstracts and encapsulates a “sub-network”

• Connector

 Defines behaviour for primitive objects in the composition

• Signal, Signal1, Signal2

Defines the information flow between Connectors
Implements default behaviour for the information flow

Collaborations
The Network class instance puts the input data to the appropriate starter Connectors and then asks
the last Connector representative in the chain to calculate the output. The last Connector in the
chain calls the connectors upon which it depend to forward their results for final computation. Each
Connector when asked for output calculates its output and puts in the aggregate Signal class and
returns a reference for this Signal class.

Consequences
Calculations in the Network pattern can consume a lot of stack space in a large network.
Using a single data type in the Signal class to achieve flexibility can impose an overhead of data
transformations.

Implementations
1. Signals must share interface, but some variation adopting a signal class hierarchy (see Signal,

Signal1, Signal2 in Figure 2) can be implemented. This implies that data can be different but
interface as defined in Signal must be shared.

2. Connections from many connectors to one connector can be made using various collection
classes. If the sequence by which the connections are made are important then use an ordered
collection class like a stack or list. If the order is not important then use e.g. a set.

3. Another variation is changing the network dynamically. The network can change dynamically
by changing the connections between all the components by adding appropriate interface for
dynamically updating the connections e.g. Connect and Disconnect. And if the connections in
each component are implemented using container classes as mentioned in 2 then it’s a matter of
deleting and adding connections.

4. Calculations in each component might be implemented using the strategy pattern. This could
allow for just one class representing the Connector class which has to support some kind of
generic calculation interface that can be implemented in a strategy pattern.

5. It might be desirable to differentiate input or output e.g. having a control signal that affects the
other input signals. This can be obtained by enhancing the interface of the relevant component
either by the method mentioned in 1 or by separate interface allowing references to the control
signal.

6. Concurrency can be implemented to achieve better performance and possibly spread
computation to different processors. Computation in each node (Component) can be calculated

in a separate thread and semaphors can be used to signal that computations have ended and
that the nodes which depend on this node can obtain the result.

7. Instead of having calculations redone at every request, the network pattern can reset a flag in
each Component instance which in turn are set when the first calculation have been done and
data stored in the associated Signal class.

8. In C++ the errorhandling can be implemented using the exception handling mechanism and let
the Network class catch the Network related errors.

Sample Code
The following code shows an implementation of the very simple digital signal processor depicted in
Figure 1. Note code has been replaced with an ellipsis “ . . . ” where the code is considered
superfluous.

The LF and HF VolumeControls increase or decrease the signal and the two signals are finally
added in the Adder. The LF-Channel and HF-Channel illustrate the use of the Composite class of
the Network Pattern to model a sub-network.

The signal that passes through this network is a number of discrete frequencies with an associated
value (volume i.e. sound pressure) comprised in a class Spectrum and contained within a Signal.
The Signal class corresponds to the Signal class in the pattern description.

The Signal class is the sole representative for the Signal hierarchy in the Network pattern. Signal in
this case wraps the Spectrum and provides access through member functions.

class Signal {
public:

Signal(const Spectrum& v);
~Signal();
void SetValue(const Spectrum& v);
Spectrum& GetValue();
ostream& operator << (ostream& s);

private:
Spectrum Value;

};

The Component class is a true virtual base class defining the interface and default behavior of all
elements in the network. The member function SetInput() is only used in subclasses that act
as starters which in this case is the Microphone.
A simple mechanism has been implemented to avoid double (or more) recalculation of the same
result in the case where a Component derived subclass provides it’s output to more than one
element. The mechanism is not applicable in concurrent environments. The private member flag
fReset shows if computation have been done or if it has to be done. The overall network class,
which in this case is the Chip (see subsequent class declarations), have the responsibility to reset
using the Reset() member of all the components that are part of the network. When the member
GetOutput() of an element is called and the calculation is done the first time, the flag is set
using the member Ready().
The other private member Owner is added to allow a component to add itself and possibly notify a
network of problems

class Component {
public:

Component(Chip * o);

virtual ~Component() {};
virtual void Connect(Component * c) = 0;
virtual void DisConnect(Component * c) = 0;
void Reset();
void Ready();
virtual void SetInput(const Spectrum& val);
virtual Signal& GetOutput() = 0;

protected:
BOOL GetIsReady();

private:
BOOL fReset;
Chip *Owner;

};

The Microphone is a starter component which mean that it does not depend on any other
components hence the connector members have empty bodies. But other components depend on it.

class Microphone : public Component {
public:

Microphone(Chip * o, const Spectrum& val);
 virtual ~Microphone();

virtual void Connect(Component * c){};
virtual void DisConnect(Component * c){};
virtual Signal& GetOutput();
virtual void SetInput(const Spectrum& val);

private:
Signal sign;

};

The volume control component is a regular primitive in this network and calculations have for
simplicity been implemented as a multiplying factor that is applied to all members of a spectrum
meaning that all frequency values are amplified with the same value.

class VolumeControl : public Component {
public:

VolumeControl(Chip * o, float val);
virtual ~VolumeControl();
virtual void Connect(Component * c);
virtual void DisConnect(Component * c);
virtual Signal& GetOutput();
virtual void SetMultValue(const float val);
virtual float GetMultValue();

• • •
};

The filter class has for simplicity been implemented with multiply factors for each frequency
thereby giving various frequencies higher weight.

class Filter : public Component {
public:

Filter(Chip * o, const float * val, const int count
);

virtual ~Filter();
virtual void Connect(Component * c);
virtual void DisConnect(Component *);

virtual Signal& GetOutput();
virtual void SetFilter(const float * val, int count

);
virtual float * GetFilter();

• • •
};

The Channel class encapsulates a simple network consisting of a Filter and a VolumeControl. This
illustrate the use of the Composite class to create sub-networks in the Network pattern. The
Channel class can be reused since sub-network consisting of the Filter and The VolumeControl
occurs twice in Figure 1.

class Channel: public Component {
public:
 Channel(Chip * o

 , const float * FiltVal
 , const int FiltCount
 , float VCVal);
~Channel();
virtual void Connect(Component * c);
virtual void DisConnect(Component *);
virtual Signal& GetOutput();

• • •

private:
VolumeControl* VolCon;
Filter* Filt;
• • •

};

The constructor of the Channel class creates the components that makes up the sub-network and
interconnects the components.

Channel::Channel(Chip * o
 , const float * FiltVal
 , const int FiltCount
 , float VCVal)

: Component(o)
{
 VolCon = new VolumeControl(o, VCVal);
 Filt = new Filter(o, FiltVal, FiltCount);
 VolCon->Connect(Filt);
}

The Adder class mimics the connection of different signals and adds the signals to the final output.

class Adder : public Component {
public:

Adder(Chip * o);
virtual ~Adder(){};
virtual void Connect(Component * c);
virtual void DisConnect(Component *);
virtual Signal& GetOutput();
int Count();

• • •

};

The Chip class is the base class for the network class hierarchy and keeps track of all the
elements using a template collection.

class Chip {
public:

Chip(){};
virtual ~Chip();
virtual Signal& GetOutput(Signal *Input) = 0;
virtual void AddComponent(Component * c);
virtual void DeleteAllComponents();
virtual void SetStarter(Component * c);
virtual void SetEnd(Component * c);
virtual void ResetNetwork();
virtual Component * GetStarter();
virtual Component * GetEnd();

• • •
};

The SampleChip is the realization of a chip with the layout of elements as depicted in Figure 1.
The class only overrides the GetOutput() member of the Chip class.

class SampleChip : public Chip {
public:

SampleChip();
virtual ~SampleChip();
virtual Signal& GetOutput(Signal *Input);
// set input in starters, get output from last

component
};

The network in Figure 1 is created in the constructor of SampleChip where all elements are
created and interconnected. Note the use of the Channel class to create the sub-network consisting
of the Filter and VolumeControl.

SampleChip::SampleChip()
: Chip()
{
Spectrum starter;
Microphone * mic;
VolumeControl *PreVC;
Channel * LF;
Channel * HF;
Adder * Sum;

// initialize the starter
• • •

// create chip components,
// note: they are automatically added as components
mic = new Microphone(this, starter);

// . . . are arguments being characteristics of
// VolumeControl, LF and HF

PreVC = new VolumeControl(this, . . .);
LF = new Channel(this, . . .);
HF = new Channel(this, . . .);
Sum = new Adder(this);

// create the connections
SetStarter(mic); // Network initialized
PreVC->Connect(mic);
LF->Connect(PreVC); // split
HF->Connect(PreVC);
Sum->Connect(LF); // join
Sum->Connect(HF);
SetEnd(Sum); // Network ends

}

An example of retriving the output is:

SimpleChip *aChip;
Spectrum starter;
Signal* InputSignal;
Signal& ResultSignal;

aChip = new SimpleChip();
// initialize starter
InputSignal = new Signal(starter);

 ResultSignal = aChip->GetOutput(s);

Known Uses
AVS, a component-based software environment for visualizing complex data and for building
applications with interactive visualization and graphics functions uses a variant of this pattern in
organizing modules (file readers, data processing etc.) into a network that can be manipulated by a
visual network editor. AVS employs an object-oriented visual programming interface to create,
modify and connect these objects. The Visual Network Editor allows developers to construct
applications as connected, hierarchical networks of objects, and to create and modify data
structures with “drag-and-drop ease”.

Robert Engel, Hermann Hüni and Ralph Johnson describes in [Eng95] a framework “Conduits+”
for network protocol software where software components can be reused across layers (eg. TCP
and IP). The paper uses the term Conduits for a software component that can be connected on two
sides. Conduits are bidirectional meaning that both sides can communicate to it’s neighbors. The
design of the framework were narrowed down to use only four kinds of Conduits which all have
one neighbor on side A, and the Mux Conduits can have many neighbors on side B, an Adapter has
no neighbor conduit on side B and ConduitFactory and Protocol have exactly one neighbor conduit
on side B. The framework has been used to implement multiple layers of a signalling system within
a flexible multi-protocol ATM access switch being marketed today.

Oticon currently consider using this pattern to simulate Digital Signal Processors for hearing aids
in their fitting software Otiset. It was a requirement that the components of the simulation that they
were reuseable and able to handle multiple input and output signals.

Related Patterns

The composite pattern in the [Gam95] book by the Gang of Four are related, it does however
implies a tree structure and doesn't take into account input/output relations. But it does somewhat
resemble the hierarchy of the parts.

There is a reference in [Gam95] book that states that a variant of the Mediator pattern CSolver
does something similar to the Network pattern. The network pattern is different because the flow
has been distributed to the objects and not centralized to the mediator object.

The Facade pattern are also related in the sense that the Network class act as a high-level interface.

The Strategy pattern can be used as mentioned under implementations 4 for calculations in the
connector class thus decoupling the calculation from the networks Component elements.

Mary Shaw have in [Vlis96] in her paper “Some Patterns for Software” a one page informal
description of a very similar pattern: Pipeline.

Regine Meunier describes The Pipes and Filters architectural pattern in [Busch96]. This is a very
general approach to the subject and covers most aspects of these sorts of patterns. The main
component in the Pipes and Filters paper are Filters that enrich, refine or transform input data,
Pipes that serve as connectors between Filters, Data Sources that provide the system with input,
and Data Sink such as a file, terminal, etc. that consumes the output. The activity of a filter can be
passive or active. If the filter is passive it can gain it’s data either by a subsequent pipeline element
pulls output data from the filter or that a previous pipeline element pushes new input data to the
filter (push vs. pull). If the filter is active it exist on it’s own with a loop pulling it’s input from and
pushing its output down pipelines. So an active filter is typically a program or a thread. In this
context the Network patterns employs a passive filter (or pull) mechanism for activating, because
each component (comparable with filters) in the the Network pattern ask it’s components of which
it depends for their output and so on.

References:
Gam95: Gamma, Helm, Johnson and Vlissides “Design Patterns”, Addison-Wesley 1995
Busch96: Buschmann, Meunier, Rohnert, Sommerlad and Stal “Pattern Oriented Software

Architecture: A System of Patterns”, John Wiley & Sons, 1996
Vlis96: Vlissides, Coplien and Kerth “Pattern Languages of Program Design 2”, Addison-

Wesley 1996
Eng95: Engel, Johnson and Hüni, “A Framework for Network Protocol Software”, OOPSLA95

