
Basic Relationship Patterns

James Noble

MRI, School of MPCE,

Macquarie University, Sydney.

kjx@mri.mq.edu.au

Abstract

Relationships between objects are almost as important to designs as objects themselves. Most

programming languages do not support relationships well, so programmers must implement relation-

ships in terms of more primitive constructs. This paper presents �ve basic patterns which describe

how objects can be used to model relationships within programs. By using these patterns, programs

and designs can be made smaller, more exible, and easier to understand and maintain.

Introduction

Relationships, also known as collaborations or associations, are very important in object oriented design.

For example, collaborations make up one third of the CRC (Class Responsibility Collaboration) design

technique [25], and Rumbaugh has claimed that relationships are complementary to (and as important

as) objects themselves [20]. Unfortunately, most object oriented programming languages do not support

relationships well. For example, designs may use one-way or two-way relationships between objects; they

may associate one object with one other object, one object with many other objects, or many objects

with many others; they may be complete | always relating objects | or partial, sometimes relating

objects and sometimes not. Programming languages support relationships mainly through attributes

(also known as variables, slots, or data members), which are one-way links from one object to one

other object. This means that programmers must somehow build up other relationships using the raw

materials the languages provide | objects, messages, and attributes [22].

This paper presents �ve basic patterns for implementing relationships between objects. The patterns

address the most basic kind of relationships where one object needs to be able to refer to another object

at runtime. These relationships are often called associations or collaborations, to distinguish them

from the more complex aggregation and inheritance. The �rst two patterns describe the fundamental

ways to model relationships | either using attributes or using objects. The following three patterns

describe how one-to-one, one-to-many and two-way relationships can be modelled. The elementary

content of these patterns should not surprise any object oriented software practitioner, and they can

all be found in the general OO literature [25, 2, 21, 22]. Rather, these patterns attempt to record

well known design and programming folklore, describing techniques to new programmers, and, for more

experienced programmers, illustrating when particular techniques are appropriate. The patterns are

mostly language independent, however, they will work best in languages like Smalltalk, where (almost)

everything is an object, especially as they do not address explicit memory management. The patterns

were motivated by experience teaching object oriented design and programming to students who had

backgrounds in data modelling, or who had attended a course on object oriented analysis techniques,

but otherwise had no practice in object oriented design.

Figure 1 summarises the problems dealt with by this collection of patterns, and the solutions they

provide. Although these patterns do not form a complete pattern language, there is some structure

to these patterns, which is illustrated in Figure 2. This diagram illustrates two relationships between

patterns in the language. One pattern can re�ne another pattern, providing more detail on how to

implement that pattern. Alternatively, two patterns can conict, indicating that the two patterns are

mutually exclusive, each providing a di�erent solution to a common problem.

Pattern Problem Solution

Relationship

As Attribute

How do you design a very simple relation-

ship?

Make an attribute

to represent the relationship.

Relationship

Object

How do you design a big,

important, or common relationship?

Make a Relationship Object

to represent the relationship.

Collection

Object

How do you design a

one-to-many relationship?

Make a Collection Object

to model the relationship.

Active

Value

How do you design an

important one-to-one relationship?

Make an Active Value

to model this relationship.

Mutual

Friends

How can you represent a

two-way relationship?

Make a consistent set of

one-way relationships.

Figure 1: Summary of the Patterns

Relationship
Object

Active
Value

Collection
Object

Mutual
Friends

Refines:Conflicts:

Relationship
As Attribute

Figure 2: Structure of the Patterns

Forces

Each of these patterns resolves a number of di�erent forces, and some conicting patterns (such as

Relationship as Attribute (1) and Active Value (4)) resolve similar problems in di�erent ways.

Many of the patterns consider the ease of reading or writing of a particular solution | generally, solutions

which are easy to write are more likely to be chosen by programmers, and solutions which are easy to

read are likely to be easier to maintain. Several patterns also address the cohesion and coupling of

the resulting designs, as designs with high cohesion within objects and low coupling between them are

more exible, understandable, and easier to maintain. This is often related to whether a relationship is

represented explicitly by a single element of a design, or whether it is dispersed across several objects,

attributes, and methods. Representing a relationship explicitly generally makes it easier to identify the

relationship within the design, to change the implementation of the relationship if necessary, to maintain

consistency in two-way relationships, and to reuse both the relationship and other participating objects

elsewhere. The patterns are marginally concerned with e�ciency | the time and space cost of a design,

and the number of objects it requires.

Example

The patterns in this paper use examples drawn from a simple system for an insurance o�ce, see Figure 3.

The most important object in the system is Policy, which represents an insurance policy. Each Policy

belongs to a Client (although a single client can have many policies), and a policy can also have a

number of Endorsements to change its wording. When a policy is issued, it is associated with one or

more Underwriters, who receive a share of the premium in return for meeting a share of the costs of any

claims. Finally, a PolicyWindow, not shown in the diagram, provides a GUI interface for the system.

Figure 3: Insurance Analysis Model

Form

The patterns are written in a modi�ed Portland form. Each begins with a question (in italics) describing

a problem, followed by a one paragraph describing the pattern's context, and a second paragraph

describing the forces the pattern resolves. A boldface \Therefore:" introduces the solution (also

italicised) followed by the consequences of using the pattern, an example of its use, and some known

uses and related patterns. All the examples are presented in Smalltalk, although the patterns are

applicable to most object oriented languages.

1 Relationship As Attribute

How do you design a very simple relationship?

Simple, one-way, one-to-one relationships are very common in object oriented models. For example,

an insurance Policy object must record the date and time the policy was issued, and an client object

must record the name and address of the client it represents. Such relationships generally carry very

little weight in the application domain | the objects themselves are important, but the fact that these

particular objects are related is coincidental. Often, the fact that the objects are related is important

to only one of the related objects (the date is important to the policy, but the policy isn't important

to the date). Changes in the relationship | for example, a client changing their address | are only

important insofar as they record the changing circumstances of that object in the program domain, and

don't have far-reaching e�ects within the program.

Because these kinds of relationships arise so often, they need to be simple to represent in a program,

so that they are easy to write and can be immediately understood by programmers later reading the

program. For similar reasons, they must be implemented so that they impose a minimal overhead on

the program | both in terms of the space required to represent the relationship, and the time taken to

manipulate it.

Therefore: Make an attribute to represent the relationship.

Object oriented programming languages provide attributes (variables, slots, data members) which

are local to each object instance. These attributes are ideal for modelling one-to-one relationships.

Add accessor messages if the relationship should be publicly available, and mutator messages if the

relationship should be publicly changeable.

Example

Consider modelling an insurance policy. Each Policy object must record the date and time it was issued,

the sum insured, and any excess. The Policy object's behaviour doesn't depend upon the precise values

of any of these objects, and they can be changed as necessary, without any consequent e�ects on the

program's model of the domain. Because the relationships are very simple, all this information can be

stored as attributes of the Policy object.

Consequences

Setting and accessing attributes is easy and e�cient in every object oriented programming language.

This pattern tightly couples the object with the attribute to the object referred to by the attribute.

Attributes occupy space in objects even if they are not needed in a particular case, for example, if a

policy has no excess, an attribute to store the excess will still be allocated in the Policy object.

This pattern is fundamental to object oriented design, just as object's attributes (that is, state)

are fundamental to object oriented programming. Although this pattern is simple it is not necessarily

trivial, and in my experience needs to be learned, especially by programmers with a predilection for

modelling objects as tuples using collections. More importantly, it provides alternatives to the other

patterns in this language which deal with more complex relationships.

Known Uses

Every object oriented program represents simple relationships as attributes.

Related Patterns

Relationship Object (2) is a complementary pattern which describes how to represent important

relationships with objects.

2 Relationship Object

How do you design a big, important, or common relationship?

Relationships between objects can be very complex, involving two-way communication between

many participating objects which are essentially peers. For example, the risks (and premiums) of all

the policies issued in an insurance o�ce must be distributed carefully to underwriters and reinsurers.

This distribution does not depend solely on the details of a single policy. Rather it must take into

account contracts with underwriters, reinsurance treaties, and arrangements made for other policies.

These kinds of relationships embody important concepts and constraints from the programs' domain,

and can require complex state or behaviour to implement.

Complex relationships can be implemented directly using features of programming languages such

as attributes (see Relationship As Attribute (1)), but this has several disadvantages [2, 21]. The

relationship is dispersed among its participating objects | it cannot be easily identi�ed within the

program, and thus cannot be easily located or maintained. Participating objects are tightly coupled, so

a change to the relationship necessitates a change to several of the participating objects. Participating

objects' cohesion is reduced, because they must model a portion of the relationship as well as the

abstractions they represent. If individual developers or teams \own" each object, they will need to

cooperate to implement the relationship.

Therefore: Make a Relationship Object to represent the relationship.

Move any methods or variables associated with the relationship from the participating objects, and

place them into the Relationship Object. Change the implementations of the participating objects so

that they refer to each other via the Relationship Object. The Relationship Object may need to

use internal subordinate objects to implement the relationship, but these should not be visible through

the Relationship Object's interface.

Example

Consider designing a system to support an insurance underwriting o�ce. The core of such a system is

a relationship between policies and underwriters which records the business written by the o�ce. This

relationship is many-to-many (a policy can be underwritten by many underwriters, and a underwriter

can underwrite many policies), partial (each policy is underwritten by a few underwriters, and each

underwriter underwrites a small fraction of the policies). The relationship is subject to a large number

of business rules. Distributing the implementation of this relationship over the Policy and Underwriter

objects would unnecessarily complicate both these objects.

Introducing a Relationship Object | a Portfolio | simpli�es the design (see Figure 4). All the

details of the relationship are collected into the Portfolio. The Portfolio object can use whatever internal

implementation structures are needed for an e�cient implementation, and these can be changed as

necessary without a�ecting Policy or Underwriter. The Portfolio can implement the business constraints

and behaviour required by the relationship.

Figure 4: Relationship Object

Consequences

A Relationship Object explicitly represents a relationship in the program. The other objects involved

in the relationship are independent of it (coupling is reduced), so the relationship object can be changed

more easily, and may be able to be reused in other contexts. An explicit Relationship Object also

increases cohesion, since the other participating objects do not need to model part of the relationship.

Introducing Relationship Objects increases the number of objects in the program, which can increase

memory footprint, and accessing objects indirectly via Relationship Objects can reduce execution

e�ciency. Relationship Objects are currently under discussion in the literature on object oriented

design [10, 18].

Known Uses

ParcPlace Smalltalk provides several examples of Relationship Objects. Collections and ValueHold-

ers are specialised kinds of Relationship Objects (Active Value (4) and Collection Object (3)

respectively). ObjectWorks introduced DependentsCollection objects to record and manage the rela-

tionship between an object and its dependents [19], where the earlier Smalltalk-80 implemented this

relationship using a global dictionary [9].

Related Patterns

Relationship As Attribute (1) is a complementary pattern which describes how to represent sim-

ple one-to-one relationships e�ciently. Observer and Mediator [8] and Director [5] describe how

Relationship Objects can coordinate or control the behaviour of their participating objects. Rela-

tionship Objects can also record supplementary information, such as the time span of the relationship

[3]. Martin Fowler has described Relationship Objects in detail [6].

3 Collection Object

How do you design a one-to-many relationship?

One-way one-to-many relationships are almost as common as one-way one-to-one relationships. For

example, a standard insurance policy can be endorsed to deal with special situations. One policy can

have multiple endorsements, so this should be modelled as a many-to-one relationship between Policy

objects and Endorsement objects. Since Endorsements are meaningless outside their particular policies,

this is a one-way relationship.

Because they are so common, one-to-many relationships need to be implemented as easily and as

e�ciently as possible. Unfortunately, in most object-oriented programming languages, one-to-many

relationships are rather more di�cult to implement than one-to-one relationships. The Relationship

As Attribute (1) pattern does not extend cleanly to relationships where one object is linked to

more than one object. Although the one object can have multiple attributes, each attribute must be

accessed individually | the attributes cannot be managed as a group. Multiple attributes can be

used to implement multiple one-to-one relationships, but not one-to-many relationships. One-to-many

relationships can be implemented by hard-coding the relationship into every participating object. This

disperses the relationship across all participating objects, couples them very tightly together, and has

to be rewritten for each relationship in a design.

Therefore: Make a Collection Object to model the relationship.

Most object oriented libraries provide a variety of container or collection objects which can be used

to represent one-to-many relationships. The \one" object simply stores a collection which holds the

\many" objects participating in the relationship.

Example

Consider modelling an insurance policy which can have one or more endorsements attached. This

relationship can be represented by a List Collection Object. The Policy class simply keeps a List of

all its Endorsements (see Figure 5). If necessary the List can be replaced with a specialised collection

object (perhaps an EndorsementList) to implement any additional constraints or behaviour required by

the relationship.

Figure 5: Collection Object

Consequences

Using a Collection Object to represent a one-to-many relationship explicitly greatly simpli�es a

program, especially as in most object oriented languages, collections are almost as easy to use as

attributes. The Collection Object and the objects stored inside it are very weakly coupled, and so

each can be reused in di�erent contexts. A Collection Object introduces one or more extra runtime

objects, depending on its implementation, and the extra level of indirection reduces execution speed.

Known Uses

Collections are ubiquitous throughout object oriented programming. They are the most common kind

of Relationship Object (2), and they form the core of many class libraries [2, 9, 16]. Most collections

implement one-to-many one-way relationships, although some, such as Smalltalk's Dictionaries, can

implement many-to-many relationships.

Related Patterns

Pattern-Oriented Software Architecture [4] describes the collection-members variant of theWhole-Part

pattern. Smalltalk Best Practice Patterns [1] includes a number of patterns about using Smalltalk's

Collection Objects.

4 Active Value

How do you design an important one-to-one relationship?

Some one-to-one relationships are important in themselves, rather than simply connecting two ob-

jects. For example, a PolicyWindow object (a GUI entry window for a Policy) needs to store the values

entered by the user. The PolicyWindow object has a one-to-one relationship with the value of each of

its entry �elds. If one of these values (such as the sum insured) is changed, code embodying business

rules must be run to validate the entered value.

One-to-one relationships are often important because of their position in the program's architecture.

That is, objects in the program which do not participate directly in the relationship may be a�ected if

the relationship changes | in the example, changing the sum insured �eld means that business rules

must be called to verify the entered values. Alternatively, one-to-one relationships may be important

to a program due to the underlying domain. That is, a change in the relationship represents a change

to an important parameter of the domain, which the program must deal with. The importance of the

relationship can be judged by the consequences of a change to the relationship.

A one-to-one relationship can be implemented usingRelationship As Attribute (1). This requires

that code to detect and handle changes in the relationship (i.e. assignments to the attribute) must be

included in the object containing the attribute, and must be invoked whenever the attribute could have

changed. Observer [8] can be used to notify dependent objects of any changes, but this requires code

which detects and signals changes to be written especially for each attribute. This reduces the cohesion

of the class containing the attributes, and increases that class's complexity.

Therefore: Make an Active Value to model this relationship.

An Active Value is essentially an object which represents a single variable. It should have an

attribute to hold the variable's value, and should understand two messages | an accessor to retrieve

the value of the variable, and a settor to change the value. To use an Active Value, make it an

attribute of the source object of the relationship, and access the relationship by sending messages to the

Active Value, rather than to the source object. The Active Value can detect when its value changes,

and then act as the Subject in Observer [8] to update any dependent objects.

Example

The PolicyWindow can use Active Values to store the values of the entry �elds | see Figure 6.

Business rules for data validation can access the Active Values directly, rather than via the Policy

Window. Each Active Value can detect when it has changed, and then notify interested BusinessRules.

The PolicyWindow needs no specialised code to signal updates, provided all accesses to its �elds are

directed via the Active Values. Similarly, a BusinessRule does not need to access the PolicyWindow

because it can access the information it needs via the ActiveValues.

Figure 6: Active Value

Consequences

Like Relationship Object (2), this pattern reduces the coupling and increases the cohesion of the

objects involved. Code to detect and signal updates in the relationship can be written once for all

ActiveValues, rather than being dispersed within the participating objects. Active Values complicate

the program's structure by introducing many small objects, with the indirection involved increasing the

time and space costs of the program. Active Values also reduce the clarity of program text, since

otherwise simple variable accesses and assignment statements must be replaced by messages sent to

Active Values.

Known Uses

Active values were �rst provided as part of the language in LOOPS [23]. VisualWorks's ValueModel

framework is based on this pattern [19]. In particular, the ValueHolder object is a genericActive Value.

The Cooldraw [7], Unidraw [24], and QOCA [11] constraint solvers all use Active Values to represent

variables explicitly: the last two uses are mentioned in Design Patterns [8].

Related Patterns

Understanding and Using the ValueModel Framework in VisualWorks Smalltalk [26] describes how to

use Active Values in VisualWorks. Observer [8] is often used to link Active Values to the objects

which depend on the relationship. Several Active Values can form a Connected Group [13].

5 Mutual Friends

How do you design a two-way relationship?

You have a two-way relationship (also known as a bidirectional or mutual relationship) where all

participating objects are equally important. For example, in the insurance system a Client object needs

a two-way relationship with its Policy objects | clients need to be able to enumerate their policies to

compute the total premium due and policies need to know their clients in the event of a claim.

In a two-way relationship, each participating object needs to be easily accessible from every other

object. A change in any one participating object may a�ect all other objects in the relationship. If an

object joins or leaves the relationship, the other objects must be informed so the relationship remains

consistent. Note that a two-way relationship may be a one-to-one, a one-to-many, or even a many-to-

many relationship.

Unfortunately object oriented programming languages' support for two-way relationships is even

more limited than their support for one-way relationships. While one-way one-to-one relationships can

be modelled with attributes (Relationship As Attribute (1)), and one-way one-to-many relationships

modelled with collections (Collection Object (3)), there are no obvious language or library constructs

which can model two-way relationships.

Therefore: Make a consistent set of one-way relationships.

Implementing Mutual Friends has two steps. First, the two-way relationship should be split into

a pair of one-way relationships. Second, the one-way relationships must be kept consistent.

1. Splitting the relationship. The simplest kind of Mutual Friends involves a one-to-one two-way

relationship. This can be split into a pair of one-to-one one-way relationships, typically implemented

usingRelationship As Attribute (1). A one-to-many two-way relationship can be split very similarly,

except that one object will need a one-way one-to-many relationship, such as a Collection Object (3).

A two-way many-to-many relationship can be split using two collections.

2. Keeping the split relationships consistent. Choose one of the Mutual Friends as a leader, and

have it manage the other objects as its followers. The leader object should provide an interface to manage

the whole relationship. The followers' implementation of the relationship can be made much simpler,

because they should only be invoked by the leader. Language mechanisms (such as C++'s friends or

Ei�el's selective export) can be used to enforce this restriction. In a one-to-many relationship, the \one"

object is usually the better choice for the leader, since this centralizes the responsibility for maintaining

the relationship in a single object. If one object in the relationship creates the other participating

objects, this object should be the leader. If a follower needs to make a change to the relationship, it

should delegate the change to its leader.

Example

Consider again the relationship between Policies and Clients. This is a two-way, one-to-many relationship,

and it can be implemented by making clients and policies Mutual Friends. The relationship can be

broken down into two one-way relationships | a one-to-many relationship from Clients to Policies, and

a one-to-one relationship from a Policy to its Client (see Figure 7). A Client uses a List Collection

Object (3) to record its Policies. The Policy object's one-way relationship can be implemented using a

client attribute, as described in Relationship As Attribute (1).

Figure 7: Mutual Friends

The Client objects are the leaders of their Mutual Friends, because they are the \one" objects

in the relationship. Client provides addPolicy: and removePolicy: messages to acquire and dispose of

Policies. These messages set the Policy's client attribute via a privateSetClient message. In Smalltalk,

the relationship could be implemented in Client as

addPolicy: aPolicy

policies add: aPolicy.

aPolicy privateSetClient: self.

removePolicy: aPolicy

aPolicy privateSetClient: nil.

and in Policy as

privateSetClient: aClient

client := aClient.

although a robust implementation should check for errors in the parameters. If a Policy needs to change

its own Client, it should not change its client variable directly, rather it should delegate this to its leader,

that is, to Client:

setClient: aClient

aClient addPolicy: self

Consequences

This pattern disperses the implementation of a two-way relationship among all the objects participating

in the relationship. This increases the coupling between objects, because each participating object

depends upon the details of the other object's implementation. It similarly decreases their cohesion,

because each object must include part of the relationship. This pattern can be di�cult to write correctly,

because both ends of the relationship must be kept synchronised to maintain overall consistency.

Known Uses

The Smalltalk class hierarchy uses a two-way relationship between subclasses and superclasses. A class

and its subclasses areMutual Friends, with the superclass as the leader. Each class keeps a collection

of it subclasses, and each subclass has a pointer to its class [9]. Similarly, Smalltalk views and controllers

are Mutual Friends, as are VisualWorks' VisualPart and CompositePart [19].

Related Patterns

If the control ow across a relationship is primarily in one direction, you may be able to model the

relationships as if it were a one-way relationship, and use Self Delegation [1] for access in the other

direction. Composite [8] can use Mutual Friends to maintain a two-way relationship between con-

tainers and leaves. A Relationship Object (2) can model an entire complex relationship, and one or

more Observers [8] can be used to maintain two-way links between the participating objects [12, 18].

James Rumbaugh [22] and Martin Fowler [6], amongst others, have described how two-way relation-

ships can be split into mutual one-way relationships. Ward Cunningham wrote a version of Mutual

Friends on the WikiWikiWeb, and it was discussed by Ralph Johnston and Steve Metsker [15]. Steve

Metsker subsequently described how concurrent two-way relationships can be managed by a Judge [14].

Databases often provide support for two-way relationships. For example, all relationships in relational

databases can be traversed in either direction, and ODMG-93 object oriented databases automatically

maintain the consistency of inverse relationships [10].

Acknowledgements

This paper is a revised version of a paper presented at TOOLS Paci�c 1996 [17]. Thanks are due to

Wolfgang Keller, the EuroPLOP'97 shepherd for this paper, to John Grundy for his collaboration on

Explicit Relationships in Object Oriented Design [18], and to Michael Richmond, Jonathan Tidswell,

John Potter and David Holmes for their comments on drafts.

References

[1] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1996.

[2] Grady Booch. Object Oriented Analysis and Design with Applications. Benjamin Cummings, second edition,

1994.

[3] Lorrie Boyd. Patterns of association objects in large scale business systems. In Pattern Languages of

Program Design, volume 3. aw, 1997.

[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented

Software Architecture. John Wiley & Sons, 1996.

[5] Jens Coldewey. Decoupling of object-oriented systems: A collection of patterns. Technical report, sd&m

| software design & management GmbH, April 1997.

[6] Martin Fowler. Analysis Patterns. Addison-Wesley, 1997.

[7] Bjorn N. Freeman-Benson. Converting an existing user interface to use constraints. In Proc. ACM Sympo-

sium on User Interface Software and Technology (UIST), 1993.

[8] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns. Addison-Wesley,

1994.

[9] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation. Addison-Wesley,

1983.

[10] Ian Graham, Julia Bischof, and Brian Henderson-Sellers. Associations considered a bad thing. Journal of

Object-Oriented Programming, 9(9), February 1997.

[11] Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. An object-oriented architecture for

constraint-based graphical editing. In Third Eurographics Workshop on Object-Oriented Graphics, 1992.

[12] Wolfgang Keller. Mapping associations from OODBs to RDBMs. Technical report, sd&m | software

design & management GmbH, 1995.

[13] Jairong Li. Connected group, 1996. Reviewed at EuroPLOP.

[14] Steve Metsker. The judge pattern. Submitted to the Journal of Object Oriented Programming, April 1997.

[15] Steve Metsker, Ward Cunningham, and Ralph Johnston. Symmetrical reference.

http://c2.com/cgi/wiki?SymmetricalReference.

[16] Bertrand Meyer. Reusable Software: The Base Object-Oriented Component Libraries. Prentice Hall, 1994.

[17] James Noble. Some patterns for relationships. In TOOLS 21, Melbourne, 1996.

[18] James Noble and John Grundy. Explicit relationships in object-oriented development. In TOOLS 18,

Melbourne, 1995. Prentice-Hall.

[19] ParcPlace Systems. VisualWorks Smalltalk User's Guide, 2.0 edition, 1994.

[20] James Rumbaugh. Relations as semantic constructs in an object-oriented language. In OOPSLA Proceed-

ings, 1987.

[21] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen. Object-

Oriented Modeling and Design. Prentice Hall, New Jersey, 1991.

[22] James E. Rumbaugh. Models for design: Generating code for associations. Journal of Object-Oriented

Programming, 8(9), February 1996.

[23] M. J. Ste�k, D. G. Bobrow, and K. M. Kahn. Integrating access-oriented programming into a multiparadigm

environment. IEEE Software, 3(1), January 1986.

[24] John M. Vlissides and Mark A. Linton. Unidraw: A framework for building domain-speci�c graphical

editors. ACM Transactions on Information Systems, 8(3), 1990.

[25] Nancy M. Wilkerson. Using CRC Cards: An Informal Approach to Object-Oriented Design. SIGS Books,

1995.

[26] Bobby Woolf. Understanding and using the ValueModel framework in VisualWorks Smalltalk. In Pattern

Languages of Program Design. Addison-Wesley, 1994.

